• Title/Summary/Keyword: High Ambient Temperature

Search Result 775, Processing Time 0.028 seconds

Ground High/Low Temperature Test for FA-50 Aircraft (FA-50 경공격기 전기체 지상 고/저온시험)

  • Ahn, Jong Hoon;Kim, Tae Ho;Woo, Seung Cheol;Cho, Young Kyun;Kim, Do Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The ground high/low temperature test objective is to check the normal ground operation of FA-50 aircraft in the extreme ground ambient conditions. The aircraft was exposed in climatic conditions of the basic climatic category according to the MIL-HDBK-310. For verified normal operation in the extreme high temperature, the high temperature test was performed in the hot regional type conditions and accentuated solar radiation heat. This test was performed at the test chamber in ADD where is in Haemi. This paper was described about the test procedure of FA-50 high/low temperature including preparation, testing and results.

  • PDF

Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire

  • Shahabi, S.E.M.;Ramli Sulong, N.H.;Shariati, M.;Mohammadhassani, M.;Shah, S.N.R.
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.651-669
    • /
    • 2016
  • The behavior of shear connectors plays a significant role in maintaining the required strength of a composite beam in normal and hazardous conditions. Various types of shear connectors are available and being utilized in the construction industry according to their use. Channel connectors are a suitable replacement for conventional shear connectors. These connectors have been tested under different types of loading at ambient temperature; however, the behavior of these connectors at elevated temperatures has not been studied. This investigation proposes a numerical analysis approach to estimate the behavior of channel connectors under fire and compare it with the numerical analysis performed in headed stud and Perfobond shear connectors subjected to fire. This paper first reviews the mechanism of various types of shear connectors and then proposes a non-linear thermo-mechanical finite element (FE) model of channel shear connectors embedded in high-strength concrete (HSC) subjected to fire. Initially, an accurate nonlinear FE model of the specimens tested at ambient temperature was developed to investigate the strength of the channel-type connectors embedded in an HSC slab. The outcomes were verified with the experimental study performed on the testing of channel connectors at ambient temperature by Shariati et al. (2012). The FE model at ambient temperature was extended to identify the behavior of channel connectors subjected to fire. A comparative study is performed to evaluate the performance of channel connectors against headed stud and Perfobond shear connectors. The channel connectors were found to be a more economical and easy-to-apply alternative to conventional shear connectors.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by Using White-Cell Structure (White-Cell 구조를 응용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan;Park, YoungHwan;Lee, JaeKyung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.377-381
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was prototyped with ASIC implemented thermopile sensor which included temperature sensor and White-Cell structure in this paper. The temperature dependency of dual infrared sensors ($CO_2$ and reference IR sensors) has been characterized and their output voltage ratios according to the temperature and gas concentration were presented in this paper for achieving temperature compensation algorithm. The initial output voltages of NDIR $CO_2$ gas and reference IR sensors showed $3^{rd}$ order polynomial and linear output voltages according to the variation of ambient temperatures from 253 K to 333 K, respectively. The output voltages of temperature sensor presented a linear dependency according to the ambient temperature and could be described with V(T) = -3.0069+0.0145T(V). The characteristics of output voltage ratios could be modeled with five parameters which are dependent upon the ambient temperatures and gas concentration. The estimated $CO_2$ concentrations showed relatively high error below 300 ppm (maximum 572 % at 7 ppm $CO_2$ concentration), however, as the concentration increased from 500 ppm to 2,000 ppm, the overall estimated errors of $CO_2$ concentrations were less than ${\pm}10%$ in this research.

The flexural performance of laminated glass beams under elevated temperature

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.603-612
    • /
    • 2014
  • A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.

Broadband Piezoelectric Energy Harvesting Technology (광대역 압전 에너지 하베스팅 기술)

  • Lee, Dong-Gyu;Yee, Yeon-Jeong;Song, Hyun-Cheol
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

A Prediction on the Flammability Limits of Biodiesel Fuel in the High Temperature and Pressure Conditions (고온·고압 조건에서 바이오디젤의 가연한계 예측)

  • Lim, Young Chan;Jung, Jun Woo;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.157-162
    • /
    • 2019
  • This numerical study was analyzed to predict the flammability limits of biodiesel and diesel fuels in the high temperature and pressure conditions. To achieve this, the biodiesel fuel was simulated with the chemical species of n-heptane (n-C7H16), methyl decanoate (C11H22O2), and methyl-9-decenoate (C11H20O2), and the diesel fuel was substituted the chemical species of n-heptane. The closed 0-D homogeneous reactor model which was employed the 1100 K of ambient temperature and 35 atm of ambient pressure was used for the simulation of constant volume combustion, and the equivalence ratio was changed from 0.3 to 2.5 conditions. In addition, a comparative analysis study was conducted with the results of HCCI engine simulation and flammability limits according to the changes of equivalence ratio. The results of combustion temperature, pressure, and ignition delay were increased when the equivalence ratio elevated from 0.3 to 1.3 conditions because the increase in fuel oxidation rate affects the chemical reaction of the overall combustion process. Furthermore, the CO and NOX production under the rich combustion conditions are considered to have a trade off relationship since the OH radicals and O2 chemical species are greatly affected the CO and NOX production and oxidation processes.

Effect of Hydrogen Treatment on Electrical Properties of Hafnium Oxide for Gate Dielectric Application

  • Park, Kyu-Jeong;Shin, Woong-Chul;Yoon, Soon-Gil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Hafnium oxide thin films for gate dielectric were deposited at $300^{\circ}C$ on p-type Si (100) substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed in $O_2$ and $N_2$ ambient at various temperatures. The effect of hydrogen treatment in 4% $H_2$ at $350^{\circ}C$ for 30 min on the electrical properties of $HfO_2$for gate dielectric was investigated. The flat-band voltage shifts of $HfO_2$capacitors annealed in $O_2$ambient are larger than those in $N_2$ambient because samples annealed in high oxygen partial pressure produces the effective negative charges in films. The oxygen loss in $HfO_2$films was expected in forming gas annealed samples and decreased the excessive oxygen contents in films as-deposited and annealed in $O_2$ or $N_2$ambient. The CET of films after hydrogen forming gas anneal almost did not vary compared with that before hydrogen gas anneal. Hysteresis of $HfO_2$films abruptly decreased by hydrogen forming gas anneal because hysteresis in C-V characteristics depends on the bulk effect rather than $HfO_2$/Si interface. The lower trap densities of films annealed in $O_2$ambient than those in $N_2$were due to the composition of interfacial layer becoming closer to $SiO_2$with increasing oxygen partial pressure. Hydrogen forming gas anneal at $350^{\circ}C$ for samples annealed at various temperatures in $O_2$and $N_2$ambient plays critical role in decreasing interface trap densities at the Si/$SiO_2$ interface. However, effect of forming gas anneal was almost disappeared for samples annealed at high temperature (about $800^{\circ}C$) in $O_2$ or $N_2$ambient.

  • PDF

Effects of Probiotics on Antioxidant Biochemical Parameters and Antioxidant Enzymesin the Blood, Intestinal Mucosal Tissues and Liver of Broiler Chicks under High Ambient Temperature Conditions (고온기 생균제 급여가 육계의 혈액, 소장 점막 및 간 조직에서 항산화 생화학 지표 및 항산화 효소에 미치는 영향)

  • Kang-Min Seomoon;In-Surk Jang
    • Korean Journal of Poultry Science
    • /
    • v.50 no.2
    • /
    • pp.109-118
    • /
    • 2023
  • Four-d-old broiler chicks were randomly assigned to 3 groups with 9 replicates (8 birds/cage) under high ambient temperature; birds fed a basal diet (CON), a basal diet supplemented with 0.25% of probiotic complex (LPB, 1 × 106 Lactobacillus plantarum, 1 × 106 Bacillus subtilis, and 1 × 106 Saccharomyces cerevisiae) and 0.5% probiotic complex (HPB). Immediately after 28-d feeding trial, 6 birds having average body weight per group were sacrificed for evaluating the effects of probiotics on antioxidant parameters in the serum, intestine, and liver of birds. As results, serum biochemical parameters of nitrogen components including total protein, albumin, urea nitrogen, and glutathione were unaffected by dietary probiotics. In addition, serum superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities, and lipid peroxidation (MDA) were not changed by dietary probiotic supplement in birds. In the intestinal mucosa, SOD activity in the HPB group significantly (P<0.05) increased compared with that in the CON and the LPB groups. Lipid peroxidation in the HPB group significantly (P<0.05) decreased compared with that in the CON group. However, there was no statistical difference in GPX, and GST activities in the intestinal mucosa among treatment groups. In the liver, the activities of SOD, GPX, and GST, and the level of MDA were unaffected by probiotic supplement. In conclusion, 0.5% of probiotics significantly increased SOD activity and decreased lipid peroxidation in the intestinal mucosa, suggesting that probiotic complex could be potential to improve the small intestinal antioxidant capacity of bird under high ambient temperature conditions.

Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution (질소희석량 조절에 따른 터빈 운전조건 변화를 고려한 IGCC 용 가스터빈의 성능분석)

  • Kim, Chang Min;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1023-1029
    • /
    • 2013
  • The integration between a gas turbine and an air separation unit (ASU) is important in IGCC plants. The portion of ASU air extracted from the gas turbine and the degree of nitrogen supply from the ASU to the gas turbine side are important operating parameters. Their effect on the gas turbine performance and operability should be considered in a wide ambient temperature range. In this study, appropriate nitrogen dilution rate and turbine inlet temperature that satisfy the two limitations of turbine blade temperature and maximum allowable power output were predicted. The air integration was set at zero. The simulation showed that the power output increases and turbine blade temperature decreases as the nitrogen dilution increases. The maximum allowable power output can be obtained under medium and low ambient temperature ranges. Under a high ambient temperature range, the achievable power is less than the maximum power.