• Title/Summary/Keyword: High Acoustic Quality

Search Result 151, Processing Time 0.022 seconds

Semiautomated Analysis of Data from an Imaging Sonar for Fish Counting, Sizing, and Tracking in a Post-Processing Application

  • Kang, Myoung-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Dual frequency identification sonar (DIDSON) is an imaging sonar that has been used for numerous fisheries investigations in a diverse range of freshwater and marine environments. The main purpose of DIDSON is fish counting, fish sizing, and fish behavioral studies. DIDSON records video-quality data, so processing power for handling the vast amount of data with high speed is a priority. Therefore, a semiautomated analysis of DIDSON data for fish counting, sizing, and fish behavior in Echoview (fisheries acoustic data analysis software) was accomplished using testing data collected on the Rakaia River, New Zealand. Using this data, the methods and algorithms for background noise subtraction, image smoothing, target (fish) detection, and conversion to single targets were precisely illustrated. Verification by visualization identified the resulting targets. As a result, not only fish counts but also fish sizing information such as length, thickness, perimeter, compactness, and orientation were obtained. The alpha-beta fish tracking algorithm was employed to extract the speed, change in depth, and the distributed depth relating to fish behavior. Tail-beat pattern was depicted using the maximum intensity of all beams. This methodology can be used as a template and applied to data from BlueView two-dimensional imaging sonar.

Microstructure and Electrical Properties of ZnO Thin Film for FBAR with Annealing Temperature (FBAR용 ZnO 박막의 열처리 온도변화에 따른 미세조직 및 전기적 특성)

  • Kim, Bong-Seok;Kang, Young-Hun;Cho, Yu-Hyuk;Kim, Eung-Kwon;Lee, Jong-Joo;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.42-47
    • /
    • 2006
  • In this paper, we prepared high-quality ZnO thin films for application of FBAR (Film Bulk Acoustic Resonator) by using pulse DC magnetron sputtering. To prevent the formation of low dielectric layers between metal and piezoelectric layer, Ru film of 30 nm thickness was used as a buffer layer. In addition we investigated the influence of annealing condition with various temperatures. As the annealing temperature increased, the crystalline orientation with the preference of (002) c-axis and resistance properties improved. The single resonator which was fabricated at $500^{\circ}C$ exhibited the resonance frequency and the return loss 0.99 GHz and 15 dB, respectively. This work demonstrates potential feasibility for the use of thin film Ru buffer layers and the optimization of annealing condition.

Control of the Supersonic Jet Noise Using a Wire Device (와이어 장치를 이용한 초음속 제트소음의 제어)

  • Kweon Yong Hun;Lim Chae Min;Aoki Toshiyuki;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.64-67
    • /
    • 2004
  • The present study describes an experimental work to reduce supersonic jet noise using a control wire device that is placed into the supersonic jet stream. The jet pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded conditions. The wire device is composed of long cylinders with a very small diameter. X-type wire device is applied to control the supersonic jet noise, and its location is varied to investigate the effect of the control wire device on supersonic jet noise. A high-quality Schlieren optical system is used to visualize the flow field of supersonic jet with and without the control wire device. Acoustic measurement is performed to obtain the overall sound pressure level and noise spectra. The results obtained show that the present wire device destroys the shock-cell structures, reduces the shock strength, and consequently leading to a substantial suppression of supersonic jet noise.

  • PDF

A study on the crystallographic properties of AlN/Al/SiO$_2$/Si thin film for FBAR (FBAR용 AlN/Al/SiO$_2$/Si 박막의 결정학적 특성에 관한 연구)

  • Kim, G.H.;Keum, M.J.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.151-154
    • /
    • 2003
  • AlN/Al/SiO$_2$/Si thin films for application to FBAR(Film Bulk Acoustic Resonator) devices were prepared by FTS(Facing Targets sputtering system) apparatus which provides a stable discharge at low gas pressures and can deposit high quality thin films because of the substrate located apart from the plasma. The AlN thin films were deposited on a $SiO_2(1{\mu}m)/Si(100)$ substrate using an Al bottom electrode. The process parameters were fixed such as sputering power of 200W, working pressures of 1mTorr and AlN thin film thickness of 800nm, respectively and crytallographic characteristics of AlN thin films were investigated as a function of $N_2$ gas flow rate$[N_2/(N_2+Ar)]$. Thickness of AlN thin films were measured by $\alpha$-step, the crystallographic characteristics and c-axis preferred orientation were evaluated by XRD.

  • PDF

Interpretation of Physical Properties of Marine Sediments Using Multi­Sensor Core Logger (MSCL): Comparison with Discrete Samples

  • Kim, Gil-Young;Kim, Dae-Choul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.166-172
    • /
    • 2003
  • Multi­Sensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 22­24 m/s in velocity, $0.02­-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.5­2.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.

A Study on Voice Color Control Rules for Speech Synthesis System (음성합성시스템을 위한 음색제어규칙 연구)

  • Kim, Jin-Young;Eom, Ki-Wan
    • Speech Sciences
    • /
    • v.2
    • /
    • pp.25-44
    • /
    • 1997
  • When listening the various speech synthesis systems developed and being used in our country, we find that though the quality of these systems has improved, they lack naturalness. Moreover, since the voice color of these systems are limited to only one recorded speech DB, it is necessary to record another speech DB to create different voice colors. 'Voice Color' is an abstract concept that characterizes voice personality. So speech synthesis systems need a voice color control function to create various voices. The aim of this study is to examine several factors of voice color control rules for the text-to-speech system which makes natural and various voice types for the sounding of synthetic speech. In order to find such rules from natural speech, glottal source parameters and frequency characteristics of the vocal tract for several voice colors have been studied. In this paper voice colors were catalogued as: deep, sonorous, thick, soft, harsh, high tone, shrill, and weak. For the voice source model, the LF-model was used and for the frequency characteristics of vocal tract, the formant frequencies, bandwidths, and amplitudes were used. These acoustic parameters were tested through multiple regression analysis to achieve the general relation between these parameters and voice colors.

  • PDF

Designing Laser Pulses for Manipulating the Interior Structure of Solids (고체 내부의 구조적 변화를 위한 Laser Pulse의 설계)

  • Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.14-22
    • /
    • 1995
  • This paper is concerned with the design of optimal surface heating patterns that result in focusing acoustic energy inside a subsurface target volume at a specified target time. The surface of the solid is heated by an incident laser beam which gives rise to shear and compressional waves propagating into the solid. The optimal heating design process aims to achieve the desired energy focusing at the target with minimal laser power densities and minimal system disturbance away from the target. The optimality conditions are secured via the conjugated gradient method and by the finite element method along with using the half-space Green's function matrix. Good quality energy focusing is achived with the optimal designs reflecting the high directivity of the photothermally generated shear wave patterns.

  • PDF

Characteristics of detecting arc of AE sensor for using PZT ceramics (PZT 세라믹을 이용한 AE센서의 아크 검출 특성)

  • Yoo, J.S.;Kwon, O.D.;Yun, Y.J.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.515-518
    • /
    • 2004
  • The Piezoelectric ceramics for AE(Acoustic Emission) sensor are desired large electromechanical coupling factor, high mechanical quality factor and good characteristic resonance frequency. In this study, the empirical formula of specimens is used $0.9Pb(Zr_xTi_{1-x})O_3-0.1Pb(Mn_{1/3}Nb_{1/3}Sb_{1/3})O_3$ (PZT-PMNS). The piezoelectric and dielectric characteristic are investigated by sintering temperature and value of x as functions of $Ti^{2+},\;Zi^{2+}$ mol rate. MPB(morphotropic Phase boundary) is defined in the x=0.522. Because it is appeared to the best piezoelectric and dielectric characteristic in the x=0.522, it can be application by AE sensor. PZT-PMNS ceramics without pre-amplifier and filter are tested for detecting of arc signal. The detection characteristic is evaluated wave form, frequency distribution.

  • PDF

Real-time 3D Audio Downmixing System based on Sound Rendering for the Immersive Sound of Mobile Virtual Reality Applications

  • Hong, Dukki;Kwon, Hyuck-Joo;Kim, Cheong Ghil;Park, Woo-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5936-5954
    • /
    • 2018
  • Eight out of the top ten the largest technology companies in the world are involved in some way with the coming mobile VR revolution since Facebook acquired Oculus. This trend has allowed the technology related with mobile VR to achieve remarkable growth in both academic and industry. Therefore, the importance of reproducing the acoustic expression for users to experience more realistic is increasing because auditory cues can enhance the perception of the complicated surrounding environment without the visual system in VR. This paper presents a audio downmixing system for auralization based on hardware, a stage of sound rendering pipelines that can reproduce realiy-like sound but requires high computation costs. The proposed system is verified through an FPGA platform with the special focus on hardware architectural designs for low power and real-time. The results show that the proposed system on an FPGA can downmix maximum 5 sources in real-time rate (52 FPS), with 382 mW low power consumptions. Furthermore, the generated 3D sound with the proposed system was verified with satisfactory results of sound quality via the user evaluation.

A Study on Acoustic Signal Characterization for Al and Steel Machining by Audio Deep Learning (오디오 딥러닝을 활용한 Al, Steel 소재의 절삭 깊이에 따른 오디오 판별)

  • Kim, Tae-won;Lee, Young Min;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.72-79
    • /
    • 2021
  • This study reports on the experiment of using deep learning algorithms to determine the machining process of aluminium and steel. A face cutting milling tool was used for machining and the cutting speed was set between 3 and 4 mm/s. Both materials were machined with a depth to 0.5mm and 1.0mm. To demonstrate the developed deep learning algorithm, simulation experiments were performed using the VGGish algorithm in MATLAB toobox. Downcutting was used to cut aluminum and steel as a machining process for high quality and precise learning. As a result of learning algorithms using audio data, 61%-99% accuracy was obtained in four categories: Al 0.5mm, Al 1.0mm, Steel 0.5mm and Steel 1.0mm. Audio discrimination using deep learning is derived as a probabilistic result.