DOI QR코드

DOI QR Code

Microstructure and Electrical Properties of ZnO Thin Film for FBAR with Annealing Temperature

FBAR용 ZnO 박막의 열처리 온도변화에 따른 미세조직 및 전기적 특성

  • Kim, Bong-Seok (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Kang, Young-Hun (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Cho, Yu-Hyuk (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Kim, Eung-Kwon (Department of Information and Communication, Sungkyunkwan University) ;
  • Lee, Jong-Joo (Department of Information and Communication, Sungkyunkwan University) ;
  • Kim, Young-Sung (Advanced Material Process of Information Technology, Sungkyunkwan University)
  • 김봉석 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 강영훈 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 조유혁 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 김응권 (성균관대학교 전자 전기 및 컴퓨터공학과) ;
  • 이종주 (성균관대학교 전자 전기 및 컴퓨터공학과) ;
  • 김용성 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터)
  • Published : 2006.01.01

Abstract

In this paper, we prepared high-quality ZnO thin films for application of FBAR (Film Bulk Acoustic Resonator) by using pulse DC magnetron sputtering. To prevent the formation of low dielectric layers between metal and piezoelectric layer, Ru film of 30 nm thickness was used as a buffer layer. In addition we investigated the influence of annealing condition with various temperatures. As the annealing temperature increased, the crystalline orientation with the preference of (002) c-axis and resistance properties improved. The single resonator which was fabricated at $500^{\circ}C$ exhibited the resonance frequency and the return loss 0.99 GHz and 15 dB, respectively. This work demonstrates potential feasibility for the use of thin film Ru buffer layers and the optimization of annealing condition.

Keywords

References

  1. K. M. Lakin, K. T. McCarron, J. Belsick, and J. F. McDonald, 'Thin Film Bulk Acoustic Wave Resonator and Filter Technology,' IEEE RAWCON, 89-92 (2001)
  2. D. Y. Lee, 'A Study on Electrical Charateristics of ZnO Thin Film for SAW Filter,' Kor. Institute Electrical Electronic Mater. Eng., 13 [7] 617-24 (2000)
  3. W. T. Lim and C. H. Lee, 'Highly Oriented ZnO Thin Films Deposited on Ru/Si Substrate,' Thin Solid Films, 353 12-5 (1999) https://doi.org/10.1016/S0040-6090(99)00390-9
  4. S. Y. Chu, W. Water, and J. T. Liaw, 'Influence of Post-deposition Annealing on the Properties of ZnO Films Prepared by RF Magnetron Sputtering,' J. Eur. Ceram. Soc., 23 1593-98 (2003) https://doi.org/10.1016/S0955-2219(02)00404-1
  5. M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, 'Post-Deposition Annealing of Radio Frequency Magnetron Sputtered ZnO Films,' J. Vac. Sci. Tech. A, 14 [4] 2220-30
  6. W. T. Lim and C. H. Lee, 'Highly Oriented ZnO Thin Films Deposited on Ru/Si Substrates,' Thin Solid Films, 353 12-5 (1999) https://doi.org/10.1016/S0040-6090(99)00390-9
  7. A. C. Su, N. M. van der Pers, T. H. de Keyser, A. Venema, and M. J. Vellekoop, 'Stress Control of Piezoelectric ZnO Films on Silicon Substrates,' Smart Mat. and Structures, 5 744-50 (1996) https://doi.org/10.1088/0964-1726/5/6/003
  8. D. H. Zhang and D. E. Brodie, 'Effects of Annealing ZnO Films Prepared by Ion-Beam-Assisted Reactive Deposition,' Thin Solid Film, 238 95-100 (1994) https://doi.org/10.1016/0040-6090(94)90655-6
  9. W. Water and S. Y. Chu, 'Physical and Structural Properties of ZnO Sputtered Films,' Mater. Lett., 55 67-72 (2002) https://doi.org/10.1016/S0167-577X(01)00621-8