• Title/Summary/Keyword: Hierarchical K-means clustering

Search Result 88, Processing Time 0.041 seconds

A Study on Cluster Hierarchy Depth in Hierarchical Clustering (계층적 클러스터링에서 분류 계층 깊이에 관한 연구)

  • Jin, Hai-Nan;Lee, Shin-won;An, Dong-Un;Chung, Sung-Jong
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.673-676
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. In particular, hierarchical clustering provide a view of the data at different levels, making the large document collections are adapted to people's instinctive and interested requires. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. Think of the factor of simpleness, high-quality and high-efficiency, we combine the two approaches providing a new system named CONDOR system [10] with hierarchical structure based on document clustering using K-means algorithm to "get the best of both worlds". The performance of CONDOR system is compared with the VIVISIMO hierarchical clustering system [9], and performance is analyzed on feature words selection of specific topics and the optimum hierarchy depth.

  • PDF

A Simple Tandem Method for Clustering of Multimodal Dataset

  • Cho C.;Lee J.W.;Lee J.W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.729-733
    • /
    • 2003
  • The presence of local features within clusters incurred by multi-modal nature of data prohibits many conventional clustering techniques from working properly. Especially, the clustering of datasets with non-Gaussian distributions within a cluster can be problematic when the technique with implicit assumption of Gaussian distribution is used. Current study proposes a simple tandem clustering method composed of k-means type algorithm and hierarchical method to solve such problems. The multi-modal dataset is first divided into many small pre-clusters by k-means or fuzzy k-means algorithm. The pre-clusters found from the first step are to be clustered again using agglomerative hierarchical clustering method with Kullback- Leibler divergence as the measure of dissimilarity. This method is not only effective at extracting the multi-modal clusters but also fast and easy in terms of computation complexity and relatively robust at the presence of outliers. The performance of the proposed method was evaluated on three generated datasets and six sets of publicly known real world data.

  • PDF

A Design of Fuzzy Classifier with Hierarchical Structure (계층적 구조를 가진 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2014
  • In this paper, we proposed the new fuzzy pattern classifier which combines several fuzzy models with simple consequent parts hierarchically. The basic component of the proposed fuzzy pattern classifier with hierarchical structure is a fuzzy model with simple consequent part so that the complexity of the proposed fuzzy pattern classifier is not high. In order to analyze and divide the input space, we use Fuzzy C-Means clustering algorithm. In addition, we exploit Conditional Fuzzy C-Means clustering algorithm to analyze the sub space which is divided by Fuzzy C-Means clustering algorithm. At each clustered region, we apply a fuzzy model with simple consequent part and build the fuzzy pattern classifier with hierarchical structure. Because of the hierarchical structure of the proposed pattern classifier, the data distribution of the input space can be analyzed in the macroscopic point of view and the microscopic point of view. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Colorectal Cancer Staging Using Three Clustering Methods Based on Preoperative Clinical Findings

  • Pourahmad, Saeedeh;Pourhashemi, Soudabeh;Mohammadianpanah, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.823-827
    • /
    • 2016
  • Determination of the colorectal cancer stage is possible only after surgery based on pathology results. However, sometimes this may prove impossible. The aim of the present study was to determine colorectal cancer stage using three clustering methods based on preoperative clinical findings. All patients referred to the Colorectal Research Center of Shiraz University of Medical Sciences for colorectal cancer surgery during 2006 to 2014 were enrolled in the study. Accordingly, 117 cases participated. Three clustering algorithms were utilized including k-means, hierarchical and fuzzy c-means clustering methods. External validity measures such as sensitivity, specificity and accuracy were used for evaluation of the methods. The results revealed maximum accuracy and sensitivity values for the hierarchical and a maximum specificity value for the fuzzy c-means clustering methods. Furthermore, according to the internal validity measures for the present data set, the optimal number of clusters was two (silhouette coefficient) and the fuzzy c-means algorithm was more appropriate than the k-means clustering approach by increasing the number of clusters.

A New Approach for Hierarchical Dividing to Passenger Nodes in Passenger Dedicated Line

  • Zhao, Chanchan;Liu, Feng;Hai, Xiaowei
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.694-708
    • /
    • 2018
  • China possesses a passenger dedicated line system of large scale, passenger flow intensity with uneven distribution, and passenger nodes with complicated relations. Consequently, the significance of passenger nodes shall be considered and the dissimilarity of passenger nodes shall be analyzed in compiling passenger train operation and conducting transportation allocation. For this purpose, the passenger nodes need to be hierarchically divided. Targeting at problems such as hierarchical dividing process vulnerable to subjective factors and local optimum in the current research, we propose a clustering approach based on self-organizing map (SOM) and k-means, and then, harnessing the new approach, hierarchical dividing of passenger dedicated line passenger nodes is effectuated. Specifically, objective passenger nodes parameters are selected and SOM is used to give a preliminary passenger nodes clustering firstly; secondly, Davies-Bouldin index is used to determine the number of clusters of the passenger nodes; and thirdly, k-means is used to conduct accurate clustering, thus getting the hierarchical dividing of passenger nodes. Through example analysis, the feasibility and rationality of the algorithm was proved.

Clustering Gene Expression Data by MCL Algorithm (MCL 알고리즘을 사용한 유전자 발현 데이터 클러스터링)

  • Shon, Ho-Sun;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • The clustering of gene expression data is used to analyze the results of microarray studies. This clustering is one of the frequently used methods in understanding degrees of biological change and gene expression. In biological research, MCL algorithm is an algorithm that clusters nodes within a graph, and is quick and efficient. We have modified the existing MCL algorithm and applied it to microarray data. In applying the MCL algorithm we put forth a simulation that adjusts two factors, namely inflation and diagonal tent and converted them by making use of Markov matrix. Furthermore, in order to distinguish class more clearly in the modified MCL algorithm we took the average of each row and used it as a threshold. Therefore, the improved algorithm can increase accuracy better than the existing ones. In other words, in the actual experiment, it showed an average of 70% accuracy when compared with an existing class. We also compared the MCL algorithm with the self-organizing map(SOM) clustering, K-means clustering and hierarchical clustering (HC) algorithms. And the result showed that it showed better results than ones derived from hierarchical clustering and K-means method.

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

Two Phase Hierarchical Clustering Algorithm for Group Formation in Data Mining (데이터 마이닝에서 그룹 세분화를 위한 2단계 계층적 글러스터링 알고리듬)

  • 황인수
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.189-196
    • /
    • 2002
  • Data clustering is often one of the first steps in data mining analysis. It Identifies groups of related objects that can be used as a starling point for exploring further relationships. This technique supports the development of population segmentation models, such as demographic-based customer segmentation. This paper Purpose to present the development of two phase hierarchical clustering algorithm for group formation. Applications of the algorithm for product-customer group formation in customer relationahip management are also discussed. As a result of computer simulations, suggested algorithm outperforms single link method and k-means clustering.

Digital Forensic for Location Information using Hierarchical Clustering and k-means Algorithm

  • Lee, Chanjin;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Recently, the competition among global IT companies for the market occupancy of the IoT(Internet of Things) is fierce. Internet of Things are all the things and people around the world connected to the Internet, and it is becoming more and more intelligent. In addition, for the purpose of providing users with a customized services to variety of context-awareness, IoT platform and related research have been active area. In this paper, we analyze third party instant messengers of Windows 8 Style UI and propose a digital forensic methodology. And, we are well aware of the Android-based map and navigation applications. What we want to show is GPS information analysis by using the R. In addition, we propose a structured data analysis applying the hierarchical clustering model using GPS data in the digital forensics modules. The proposed model is expected to help support the IOT services and efficient criminal investigation process.

Comparison of Initial Seeds Methods for K-Means Clustering (K-Means 클러스터링에서 초기 중심 선정 방법 비교)

  • Lee, Shinwon
    • Journal of Internet Computing and Services
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • Clustering method is divided into hierarchical clustering, partitioning clustering, and more. K-Means algorithm is one of partitioning clustering and is adequate to cluster so many documents rapidly and easily. It has disadvantage that the random initial centers cause different result. So, the better choice is to place them as far away as possible from each other. We propose a new method of selecting initial centers in K-Means clustering. This method uses triangle height for initial centers of clusters. After that, the centers are distributed evenly and that result is more accurate than initial cluster centers selected random. It is time-consuming, but can reduce total clustering time by minimizing the number of allocation and recalculation. We can reduce the time spent on total clustering. Compared with the standard algorithm, average consuming time is reduced 38.4%.