• Title/Summary/Keyword: Hg$Hg^{2+}$-selectivity

Search Result 60, Processing Time 0.029 seconds

Hg2+-Selective Chemosensor Derived from 8-Hydroxyquinoline Having Benzothiazole Function in Aqueous Environment

  • Youk, Jin-Soo;Kim, Young-Hee;Kim, Eun-Jin;Youn, Na-Jin;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.869-872
    • /
    • 2004
  • Newly synthesized 8-hydroxyquinoline based benzothiazole derivative 2 showed a distinctive $Hg^{2+}$-selectivity over other transition metal ions in aqueous solution. The fluorescence emission at 455 nm of 2 was completely quenched upon interaction with $Hg^{2+}$ ions in dioxane-$H_2O$ system (9 : 1, v/v). The selectivity was decreased in the order of $Hg^{2+}\;>>\;Cu^{2+}\;>\;Cd^{2+}\;>\;Pb^{2+}\;{\thickapprox}\;Zn^{2+}\;{\thickapprox}\;Ni^{2+},\;and\;Hg^{2+}$ concentration dependent fluorescence quenching profile was observed in the presence of common interfering metal ions as background. The fluorescence behavior of 2 suggests that the prepared compound could be used as a fluorescent signaling subunit for the construction of new $Hg^{2+}$-sensitive ON-OFF type supramolecular switching systems.

Rhodamine B Hydrazide Revisited: Chemodosimetric Hg2+-selective Signaling Behavior in Aqueous Environments

  • Kim, Kyoung-Nam;Choi, Myung-Gil;Noh, Jae-Hyun;Ahn, Sang-Doo;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.571-574
    • /
    • 2008
  • The well-known Cu2+-selective chemodosimetric behavior of rhodamine B hydrazide was successfully switched to selectivity for Hg2+. The fluorescence signaling is remarkably selective toward Hg2+ ions compared to other common biologically and environmentally important metal ions, including Cu2+ ions. The detection limit was 0.2 mM in an acetate-buffered aqueous 10% methanol solution at pH 5. The OFF-ON type of signaling is due to the selective Hg2+-induced hydrolysis of the lactam ring of the hydrazide as has been reported for the standard Cu2+-signaling process of the same compound. A simple change in medium resulted in clear switching of selective signaling from Cu2+ to Hg2+, which extends the applicability of the easily accessible hydrazide derivative.

Pyrene Appended Hg2+-selective Fluoroionophore Based upon Diaza-Crown Ether

  • Choi, Myung-Gil;Kim, Hee-Jung;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.567-570
    • /
    • 2008
  • A new pyrene appended diaza-18-crown-6 ether derivative 1 has been prepared and its fluoroionophoric properties toward transition metal ions were investigated. Compound 1 exhibited a high Hg2+-selectivity over other transition metal ions as well as alkali and alkaline earth metal ions in aqueous acetonitrile solution. The ratiometric analysis of the monomer and excimer emissions of pyrene successfully signals the presence of Hg2+ ions. The detection limit for Hg2+ ions was found to be 3.1 ´ 10-6 M in 50% aqueous acetonitrile solution at pH 8.1. Competition experiments also suggest that the compound could be utilized as a selective and sensitive fluorescent chemosensor for the analysis of micromolar Hg2+ ions in physiological and environmental samples.

A Chromo- and Fluoroionophoric Thiaoxaaza-Macrocycle Functionalized with Nitrobenzofurazan Exhibiting Mercury(II) Selectivity

  • Lee, Ji-Eun;Lee, Shim-Sung;Choi, Kyu-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3707-3710
    • /
    • 2010
  • A chromo/fluorogenic $NO_2S_2$-macrocycle L functionalized with nitrobenzofurazan unit as a dual-signaling probe was synthesized and structurally characterized by single crystal X-ray analysis. In a cation-induced color change experiment, L exhibited excellent $Hg^{2+}$ ion selectivity by showing the color change from orange-red to yellow. However, this hypochromic shift by $Hg^{2+}$ was observed for the weaker coordinating anion system such as ${NO_3}^-$ and ${ClO_4}^-$ ions. The observed anion effect is due to the strong coordination of anions inhibits the bond formation between $Hg^{2+}$ and the macrocyclic tert-N atom, which is sensitive to induce the color change. In the fluorometric experiment, L showed chelate-enhanced fluorescence change effect only with $Hg^{2+}$ ion, together with a change from yellow to green emission. The sensing ability for $Hg^{2+}$ with the proposed chemosensor L is due to the stable complexation with 1:1 stoichiometry (metal-to-ligand).

Cu2+ and Hg2+Selective Chemosensing by Dioxocyclams Having Two Appended Pyrenylacetamides

  • Jeon, Hye-Lim;Choi, Myung-Gil;Choe, Jong-In;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1093-1096
    • /
    • 2009
  • Two new chemosensors 1 and 2 derived from 5,12- and 5,7-dioxocyclams were prepared and their signaling behaviors toward transition metal ions were investigated. Chemosensors 1 and 2 showed very efficient responses toward $Cu_{2+}$ and $Hg_{2+}$ ions. Ratiometric analysis of the fluorescence changes in pyrene monomer and excimer emissions clearly demonstrated the $Cu_{2+}$- and $Hg_{2+}$-selective signaling behavior. The signaling mechanism of the chemosensors is due to conformation changes upon complexation with metal ions and the inherent quenching nature of the complexed $Cu_{2+}$ and $Hg_{2+}$ ions themselves.

Mercury Ions Mediated Phosphorus Containing Carbon Dots as Fluorescent Probe for Biothiols Screening

  • Du, Han;Xu, Hu;Zhao, Yun;Li, Dan;Wang, Yuhong
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850116.1-1850116.14
    • /
    • 2018
  • In this study, we report the mercury ions ($Hg^{2+}$) mediated phosphorus-containing carbon dots (PCDs) as a selective "off-on" fluorescence probe for glutathione (GSH), cysteine (Cys) and homocysteine (Hcys). PCDs obtained by hydrothermal reaction are sensitive to $Hg^{2+}$ ions and its fluorescence can be significantly quenched owing to the electron transfer from the lowest unoccupied molecular orbital (LUMO) of PCDs to $Hg^{2+}$. Interestingly, the weak fluorescence of $Hg^{2+}$-mediated PCDs could be gradually recovered with the addition of GSH, Cys and Hcys. This can be attributed to the formation of $Hg^{2+}-S$ complex due to the super affinity of $Hg^{2+}$-sulfydryl bond. The formation of $Hg^{2+}-S$ complex extremely reduces the oxidation ability of $Hg^{2+}$ that inhibits the electron transfer from LUMO of PCDs to $Hg^{2+}$ and re-opens the native electron transition from LUMO to the highest occupied molecular orbital (HOMO) of PCDs. Thus, the green fluorescence of PCDs is switched on. Furthermore, the present $Hg^{2+}$-mediated PCDs assay exhibits a high selectivity for GSH, Cys and Hcy and has been successfully used to detect the total biothiols content in human urine samples.

A Pyrenylboronic Acid-based Fluorescence Sensor for Highly Efficient Detection of Mercury(II) Ions (효율적인 수은이온 검출을 위한 피렌-보론산 기반의 형광센서 개발)

  • Lee, Seung Yeob;Lee, Seoung Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.201-207
    • /
    • 2020
  • A new chemosensor based on a self-assembled system has been devised to detect Hg2+ions efficiently. We demonstrated that the amphiphilic building blocks consisting of pyrene and boronic acid (1) aggregate in aqueous solutions and provide an outstanding sensing platform for sensitive detection. The self-assembled 1 exhibited high selectivity and sensitivity for Hg2+ion detection via fluorescence quenching, where the Hg2+ion detection ensued from a fast transmetallation of 1. The Stern-Volmer (SV) quenching constant for its fluorescence quenching by Hg2+ions was approximately 1.58 × 108 M-1. In addition, self-assembled 1 exhibited excellent sensing abilities at nano-molar concentration levels when tap water and freshwater samples were contaminated with of Hg2+ ions.

Rhodamine Based Fluorescent Chemosensors for Hg2+ and its Biological Application

  • Choi, Ji-Young;Kim, Wan-Tae;Yoon, Ju-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2359-2364
    • /
    • 2012
  • Two new chemosensors, rhodamine 6G derivative bearing hydroxyethyl group (1) and rhodamine base derivative bearing 15-crown-5 group (2) were synthesized and their sensing behaviors toward various metal ions were investigated by UV/Vis and fluorescence spectroscopies. Addition of $Hg^{2+}$ ion to a $CH_3CN$ solution of 1 and 2 gave visual color changes as well as fluorescent OFF-ON observations. Selectivity and sensitivity of 1 towards $Hg^{2+}$ are excellent enough to detect micromolar level of $Hg^{2+}$ ion, even in equeous media and biological sample (HeLa cell).

Synthesis and optical determination of chemosensor toward Cu(II) and Hg(II)

  • Yu, Hyung-Wook;Wang, Sheng;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.68-68
    • /
    • 2011
  • A new chemosensor based on rhodamine B (1) for $Hg^{2+}$ and $Cu^{2+}$ was synthesized by one-step condensation reaction of rhodamine B hydrazide and Azo dye. Studying for its fluorogenic and colorimetric behaviors towards various metal ions, extreme sensitivity and selectivity were achieved by the detection of $Hg^{2+}$ and $Cu^{2+}$ over other commonly coexistent metal ions, which were accompanied by ring opening of a rhodamine spirocycle framework. In acetonitrile, the presence of $Hg^{2+}$ and $Cu^{2+}$ induces the formation of a Dye 1-ion complex, which was deduced by spectroscopy.

  • PDF

Simple Ratiometric Fluorophore for the Selective Detection of Mercury through Hg(II)-Mediated Oxazole Formation

  • Lee, Hee-Jin;Kim, Hae-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3959-3962
    • /
    • 2011
  • A simple propargylamide-fuctionalized chemodosimeter was prepared for the ratiometric fluorescence detection of mercuric ions in HEPES buffer. The chemodosimeter exhibited $Hg^{2+}$-induced propargyl amide-tooxazole transformation, with a significant accompanying ratiometric change in fluorescence. It afforded high selectivity for mercuric ion detection without any competitive inhibition by common alkali, alkaline earth, or other transition metal ions. The probe showed a $17{\times}10^{-6}M$ detection limit for $Hg^{2+}$ ions and potential applicability for detecting aqueous $Hg^{2+}$ ions.