• Title/Summary/Keyword: Hexahedral Element

Search Result 67, Processing Time 0.032 seconds

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Kim Chang-Boo;Park Jung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.459-466
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

  • PDF

Optimal Design of Curved Actuator through High Performance Computing (고성능 컴퓨팅을 이용한 곡면형 작동기의 최적 설계)

  • 정순완;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.87-90
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators such as THUNDER are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the adhesive as well as metal and PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of metal and adhesive, the number of metal layer are chosen as design factors.

  • PDF

Design of Forming Path for Concave Steel Plate Using the Line Array Roll Set (선형 배열 롤 셋을 이용한 오목형상 강판 성형경로 설계)

  • Roh, H.J.;Kim, K.H.;Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.361-364
    • /
    • 2008
  • Incremental forming path to manufacture a thick concave steel plate using the line array roll set is designed. To find the optimum forming path, the forming processes are simulated by the finite element method. A general-purpose commercial software, MSC.MARC is used. The rolls are modeled as rigid surfaces and the thick plate is modeled as 8-node hexahedral elastic-plastic solid elements to predict accurate springback. It is found that the process can be successfully applied to the fabrication of the dual curvature ship hull plate

  • PDF

Numerical study of 10-year-old child forearm injury

  • Mao, Haojie;Cai, Yun;Yang, King H.
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.143-158
    • /
    • 2014
  • Forearm fractures in children are very common among all pediatric fractures. However, biomechanical investigations on the pediatric forearm are rather scarce, partially due to the complex anatomy, closely situated, interrelated structures, highly dynamic movement patterns, and lack of appropriate tools. The purpose of this study is to develop a computational tool for child forearm investigation and characterize the mechanical responses of a backward fall using the computational model. A three-dimensional 10-year-old child forearm finite element (FE) model, which includes the ulna, radius, carpal bones, metacarpals, phalanges, cartilages and ligaments, was developed. The high-quality hexahedral FE meshes were created using a multi-block approach to ensure computational accuracy. The material properties of the FE model were obtained by scaling reported adult experimental data. The design of computational experiments was performed to investigate material sensitivity and the effects of relevant parameters in backward fall. Numerical results provided a spectrum of child forearm responses with various effective masses and forearm angles. In addition, a conceptual L-shape wrist guard design was simulated and found to be able to reduce child distal radius fracture.

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena;Zeman, Jan;Janda, Tomas;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.369-380
    • /
    • 2018
  • In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.

Hydrofoil selection and design of a 50W class horizontal axis tidal current turbine model

  • Kim, Seung-Jun;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.856-862
    • /
    • 2015
  • Tidal current energy is an important alternative energy resource among the various ocean energy resources available. The tidal currents in the South-Western sea of Korea can be utilized for the development of tidal current power generation. Tidal power generation can be beneficial for many fishing nurseries and nearby islands in the southwest region of Korea. Moreover, tidal power generation is necessary for promoting energy self-sufficient islands. As tidal currents are always available, power generation is predictable; thus, tidal power is a reliable renewable energy resource. The selection of an appropriate hydrofoil is important for designing a tidal current turbine. This study concentrates on the selection and numerical analysis of four different hydrofoils (MNU26, NACA63421, DU91_W2_250, and DU93_W_210LM). Blade element momentum theory is used for configuring the design of a 50 W class turbine rotor blade. The optimized blade geometry is used for computational fluid dynamics (CFD) analysis with hexahedral numerical grids. Among the four blades, NACA63421 blade showed the maximum power coefficient of 0.45 at a tip speed ratio of 6. CFD analysis is used to investigate the power coefficient, pressure coefficient, and streamline distribution of a 50 W class horizontal axis tidal current turbine for different hydrofoils.

A P-HIERARCHICAL ERROR ESTIMATOR FOR A FEM-BEM COUPLING OF AN EDDY CURRENT PROBLEM IN ℝ3 -DEDICATED TO PROFESSOR WOLFGANG L. WENDLAND ON THE OCCASION OF HIS 75TH BIRTHDAY

  • Leydecker, Florian;Maischak, Matthias;Stephan, Ernst P.;Teltscher, Matthias
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.139-170
    • /
    • 2013
  • We extend a p-hierarchical decomposition of the second degree finite element space of N$\acute{e}$d$\acute{e}$lec for tetrahedral meshes in three dimensions given in [1] to meshes with hexahedral elements, and derive p-hierarchical decompositions of the second degree finite element space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After having proved stability of these subspace decompositions and requiring certain saturation assumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling of a time-harmonic electromagnetic eddy current problem in $\mathbb{R}^3$. We perform some numerical tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive refinement scheme.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.