• Title/Summary/Keyword: Hexagonal Water

Search Result 82, Processing Time 0.023 seconds

Analysis of VVER-1000 mock-up criticality experiments with nuclear data library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Setiawan, Fathurrahman;Lemaire, Matthieu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.1-18
    • /
    • 2021
  • The criticality analysis of VVER-1000 mock-up benchmark experiments from the LR-0 research reactor operated by the Research Center Rez in the Czech Republic has been conducted with the MCS Monte Carlo code developed at the Computational Reactor Physics and Experiment laboratory of the Ulsan National Institute of Science and Technology. The main purpose of this work is to evaluate the newest ENDF/B-VIII.0 nuclear data library against the VVER-1000 mock-up integral experiments and to validate the criticality analysis capability of MCS for light water reactors with hexagonal fuel lattices. A preliminary code/code comparison between MCS and MCNP6 is first conducted to verify the suitability of MCS for the benchmark interpretation, then the validation against experimental data is performed with both ENDF/B-VII.1 and ENDF/B-VIII.0 libraries. The investigated experimental data comprises six experimental critical configurations and four experimental pin-by-pin power maps. The MCS and MCNP6 inputs used for the criticality analysis of the VVER-1000 mock-up are available as supplementary material of this article.

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

Crystal Structures of the Two Isomorphous A-DNA Decamers d(GTACGCGTAC) and d(GGCCGCGGCC)

  • Kim, Tae-gyun;Kwon, Taek-Hun;Jung, Hye-sun;Ku, Ja-Kang;Sundaralingam, Muttaiya;Ban, Chang-ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.568-572
    • /
    • 2006
  • To study the effect of sequence on DNA structure, the two decamer crystal structures one alternating,d(GTACGCGTAC), and the other non-alternating, d(GGCCGCGGCC), were solved. Crystals of both decamers belong to the hexagonal space group $P6_122$, with one strand in the asymmetric unit. The unit cell constants of the alternating decamer are a = b = 39.26 $\AA$, c = 77.70 $\AA$. The structure was refined with 1,828 reflections from 8.0 to 2.0 Aresolution to an R value of 21.3% with all DNA atoms and 63 water molecules. The isomorphous non-alternating decamer had unit cell dimensions of a = b = 39.05 $\AA$, c = 82.15 $\AA$. The structure was refined with 2,423 reflections from 8.0 to 2.0 $\AA$ resolution to a final R value of 22.2% for all DNA atoms and 65 water molecules. Although the average helical parameters of the decamers are typical of A-DNAs, there are some minor differences between them. The helical twist, rise, x-displacement, inclination and roll alternate in the alternating decamer, but do not in the non-alternating decamer. The backbone conformations in both structures show some differences; the residue G(7) of the alternating decamer is trans for $\alpha$ and $\gamma$ while the trans conformations are observed at the residue G(8) of the non-alternating decamer.

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

Solution Behaviour of Nonionic Surfactants with Polyolic Group as Hydrophilic Portion (폴리올류를 친수부로 한 비이온성 계면활성제의 용액거동)

  • Kim, S.C.;Kim, T.Y.;Lee, S.Y.;Roh, S.H;Nam, K.D.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.573-579
    • /
    • 1994
  • 1-O-oleoyl glycerol, 2-O-oleoyl myo-inositol and methyl 2-O-oleoyl-${\alpha}$-D-glucopyranoside were used as surfactants in this study. The solution properties and solubilization process of those nonionic surfactants were examined by the phase equilibria. As a result of this study, we have found that phase behavior of two component systems of surfactants/$H_2O$/cyclohexane depends on temperature respectively. The three phase regions of three component systems appeared in the temperature range of $27^{\circ}C{\sim}32^{\circ}C$, $36^{\circ}C{\sim}45^{\circ}C$ and $38^{\circ}C{\sim}52^{\circ}C$ and solubilization of water and oil was high in those three phase ranged As the temperature was varied in the two component systems, liquid crystals of hexagonal were observed to in the case of 1-O-oleoyl glycerol, and liquid crystal of lamella types were observed in the case of 2-O-oleoyl myo-inositol and methyl 2-O-oleoyl-${\alpha}$-D-glucopyranoside.

  • PDF

Influence of Ammonia and Na2EDTA on Properties of Chemical Bath Deposited ZnS Thin Films (화학적 용액성장법에 의한 ZnS 박막의 제조 시 ammonia 및 Na2EDTA의 영향)

  • Kim, Gwan-Tae;Lee, Hae-Ki;Park, Byung-Ok
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.105-110
    • /
    • 2013
  • ZnS thin films were prepared on glass substrate by using chemical bath deposition method. The influence of ammonia ($NH_4OH$) and $Na_2EDTA$ ($Na_2C_{10}H_{16}N_2O_8$) as complexing agents on structural and optical properties of ZnS thin films were investigated. Zinc acetate dihydrate ($Zn(CH_3COO)_2{\cdot}2H_2O$) and thiourea ($H_2NCSNH_2$) were used as a starting materials and distilled water was used as a solvent. All ZnS thin films, regardless of a kind of complexing agents, had the hexagonal structure (${\alpha}$-ZnS) and had a preferred <101> orientation. ZnS thin films, with 4 M ammonia and with 4 M ammonia and 0.1 M $Na_2EDTA$, had the highest <101> peak intensity. In addition, their average particle size are 280 nm and 220 nm, respectively. The average optical transmittances of all films were higher than 60% in the visible range. The optical direct band gap values of films were about 3.6~3.8 eV.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.