DOI QR코드

DOI QR Code

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera)

화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가

  • Jang, Ha Rin (Department of Environmental Engineering, Chosun University) ;
  • Moon, Deok Hyun (Department of Environmental Engineering, Chosun University)
  • Received : 2022.02.10
  • Accepted : 2022.02.28
  • Published : 2022.03.30

Abstract

In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF)의 기초연구사업(과제번호 : 2019R1F1A1053374)의 지원으로 수행한 연구이며, 이에 감사드립니다.

References

  1. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  2. Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A., and Walker, G. M. (2006). Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies, Water Research, 40, 2645-2658. https://doi.org/10.1016/j.watres.2006.05.018
  3. Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., and Watanabe, M. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells, Journal of Environmental Management, 150, 103-110. https://doi.org/10.1016/j.jenvman.2014.10.032
  4. An, Q., Jiang, Y. Q., Nan, H. Y., Yu, Y., and Jiang, J. N. (2019). Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism, Chemosphere, 214, 846-854. https://doi.org/10.1016/j.chemosphere.2018.10.007
  5. An, S. K., Song, W. J., Park, Y. M., Yang, H. A., and Kweon, J. H. (2020). Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon, Journal of Korean Society of Water and Wastewater, 34(6), 425-435. https://doi.org/10.11001/jksww.2020.34.6.425
  6. Aziz, H. A., Adlan, M. N., and Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone, Bioresource Technology, 99, 1578-1583. https://doi.org/10.1016/j.biortech.2007.04.007
  7. Cai, G. B., Chen, S. F., Liu, L., Jiang, J., Yao, H. B., Xu, A. W., and Yu, S. H. (2009). 1,3-Diamino-2-hydroxypropane-N,N,N0,N0-tetraacetic acid stabilized amorphous calcium carbonate: Nucleation, transformation and crystal growth, CrystEngComm, 12(1), 234-241. https://doi.org/10.1039/b911426m
  8. Chen, J. P., Wu, S., and Chong, K. H. (2003). Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41, 1979-1986. https://doi.org/10.1016/S0008-6223(03)00197-0
  9. Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., and Gao, B. (2021). Adsorption of emerging contaminants from water and wastewater by modified biochar: A review, Environmental Polllution, 273, 116448. https://doi.org/10.1016/j.envpol.2021.116448
  10. Cunha, D. L., Pereira, G. F. C., Felix, J. F., Aguiar, J. A., and De Azevedo, W. M. (2014). Nanostructured hydrocerussite compound (Pb3(CO3)2(OH)2) prepared by laser ablation technique in liquid environment, Materials Research Bulletin, 49, 172-175. https://doi.org/10.1016/j.materresbull.2013.08.030
  11. Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Sun, Y., Zhang, K., Xu, J., Zheng, W., Hu, Z., Yang, Y., Gao, Y. Y., Chen, Y., Zhang, X., Gao, F., and Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review, Chemosphere, 211, 235-253. https://doi.org/10.1016/j.chemosphere.2018.06.179
  12. Danish, M., Hashim, R., Ibrahim, M. N. M., Rafatullah, M., Sulaiman, O., Ahmad, T., Shamuzzoha, M., and Ahmad A. (2011). Sorption of copper(II) and nickel(II) ions from aqueous solutions using calcium oxide activated date (phoenix dactylifera) stone carbon: Equilibrium, kinetic, and thermodynamic studies, Journal of Chemical & Engineering Data, 56, 3607-3619. https://doi.org/10.1021/je200460n
  13. Ding, Z., Hu, X., Wan, Y., Wang, S., and Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests, Journal of Industrial and Engineering Chemistry, 33, 239-245. https://doi.org/10.1016/j.jiec.2015.10.007
  14. Du, Y., Lian, F., and Zhu, L. (2011). Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells, Environmental Pollution, 159(7), 1763-1768. https://doi.org/10.1016/j.envpol.2011.04.017
  15. Feng, N., Guo, X., Liang, S., Zhu, Y., and Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, Journal of Hazardous Materials, 185, 49-65. https://doi.org/10.1016/j.jhazmat.2010.08.114
  16. Garcia-Sachez, A. and Avarez-Ayuso, E. (2002). Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters, Minerals Engineering, 15(7), 539-547. https://doi.org/10.1016/S0892-6875(02)00072-9
  17. Gil, T. H., Lee, W. H., and Ahn, J. H. (2020). Adsorption of methylene blue from aqueous solution by pumpkin-seed residue, Journal of Korean Society Environmental Engineers, 42(1), 10-18. https://doi.org/10.4491/ksee.2020.42.1.10
  18. Giri, A. K., Sinhamahapatra, A., Prakash, S., Chaudhari, J., Shahi, V. K., and Panda, A. B. (2013). Porous ZnO microtubes with excellent cholesterol sensing and catalytic properties, Journal of Materials Chemistry A, 1(3), 814-822. https://doi.org/10.1039/C2TA00107A
  19. Godelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S., and Putnis, A. (2003). Interaction of calcium carbonates with lead in aqueous solutions, Environmental Science & Technology, 37(15), 3351-3360. https://doi.org/10.1021/es020238i
  20. Gomez del Rio, J. A., Morandoa, P., and Cicerone, D. S. (2004). Natural materials for treatment of industrial effluents: Comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: Batch experiments, Journal of Environmental Management, 71(2), 169-177. https://doi.org/10.1016/j.jenvman.2004.02.004
  21. Inthapanya, X., Wu, S., Han, Z., Zeng, G., Wu, M., and Yang, C. (2019). Adsorptive removal of anionic dye using calcined oyster shells: Isotherms, kinetics, and thermodynamics, Environmental Science and Pollution Research, 26, 5944-5954. https://doi.org/10.1007/s11356-018-3980-0
  22. Jang, H. R., Jeon, H. K., and Moon, D. H. (2021). Sorption of Cu, Zn, Pb and Cd from a contaminated aqueous solution using starfish (Asterina pectinifera) derived biochar, Journal of Korean Society Environmental Engineers, 43(4), 274-285. https://doi.org/10.4491/KSEE.2021.43.4.274
  23. Jeon, H. K., Cheong, K. H., Lee, J. S., Lee, J. W., and Moon, D. H. (2020). Adsorption of heavy metals in an aqueous solution using starfish (Asterina pectinifera) biochar, Journal of Korean Society Environmental Engineers, 42(5), 267-279. https://doi.org/10.4491/ksee.2020.42.5.267
  24. Lee, J. W., Jeong, E. J., Lee, J. M., Lee, Y. G., and Chon, K. M. (2021). Comparative evaluation of methylene blue and humic acids removal efficiency using rice husk derived biochars and powdered activated carbon, Journal of Korean Society on Water Environment, 37(6), 483-492. https://doi.org/10.15681/KSWE.2021.37.6.483
  25. Lee, M. Y., Park, J. M., and Yang, J. W. (2017). Micro precipitation of lead on the surface of crab shell particles, Process Biochemistry, 32(8), 671-677. https://doi.org/10.1016/S0032-9592(97)00026-5
  26. Lee, Y. H. and Yim, S. B. (2014). Removal characteristics of heavy metals in acid mine drainage (AMD) using porous starfish ceramics (I) - Treatment of AMD in a batch reactor system, Journal of the Korean Geo-Environmental Society, 15(12), 15-24.
  27. Li, H., Dong, X., da Silva, E. B., De Oliveira, L. M., Chen, Y., and Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
  28. Li, R., Wang, Z., Guo, J., Li, Y., Zhang, H., Zhu, J., and Xie, X. (2018). Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves, Water science & Technology, 77(4), 1127-1136. https://doi.org/10.2166/wst.2017.636
  29. Lim, J. E., Kim, H. W., Jeong, S. H., Lee, S. S., Yang, J. E., Kim, K. H., and Ok, Y. S. (2014). Characterization of burcucumber biochar and its potential as an adsorbent for veterinary antibiotics in water, Journal of Applied Biological Chemistry, 57(1), 65-72. https://doi.org/10.3839/jabc.2014.011
  30. Lim, J. E., Lee, S. S., and Ok, Y. S. (2015). Efficiency of poultry manure biochar for stabilization of metals in contaminated soil, Journal of Applied Biological Chemistry, 58(1), 39-50. https://doi.org/10.3839/jabc.2015.008
  31. Ma, M., Djanashvili, K., and Smith, W. (2016). Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays, Angewandte Chemie International Edition, 55, 6680-6684. https://doi.org/10.1002/anie.201601282
  32. Mojet, B., Ebbesent, S., and Lefferts, L. (2010). ChemInform abstract light at the interface: The potential of attenuated total reflection, Chemical Society Reviews, 39, 4643-4655. https://doi.org/10.1039/c0cs00014k
  33. Moon, D. H., Hwang, I. S., Koutsopyros, A., Cheong, K. H., Ok, Y. S., Ji, W. H., and Park, J. H. (2018). Stabilization of lead (Pb) and zinc (Zn) in contaminated rice paddy soil using starfish: A preliminary study, Chemosphere, 199, 459-467. https://doi.org/10.1016/j.chemosphere.2018.01.090
  34. Moon, D. H., Park, J. W., Chang, Y. Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsopyros, A., Park, J. H., and Baek, K. T. (2013). Immobilization of lead in contaminated firing range soil using biochar, Environmental Science and Pollution Research, 20, 8464-8471. https://doi.org/10.1007/s11356-013-1964-7
  35. Moon, D. H., Yang, J. E., Cheong, K. H., Koutsospyros, A., Park, J. H., Lim, K. J., Kim, S. C., Kim, R. Y., and Ok, Y. S. (2014). Assessment of natural and calcined starfish for the amelioration of acidic soil, Environmental Science and Pollution Research, 21(16), 9931-9938. https://doi.org/10.1007/s11356-014-2898-4
  36. Ngah, W. S W. and Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review, Bioresource Technology, 99, 3935-3948. https://doi.org/10.1016/j.biortech.2007.06.011
  37. Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Admedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., and Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand, Annal of Environmental Science, 3, 195-206.
  38. Oh, H. S. and Chang, J. S. (2020). Enhancement of the congo red adsorption capacity of biochars by surface modification with MgCl2pretreatment, Journal of Korean Society of Environmental Engineers, 42(10), 472-481. https://doi.org/10.4491/ksee.2020.42.10.472
  39. Panahi, H. K. S., Dehhaghi, M., Ok, Y. S., Nizami, A. S., Khoshnevisan, B., Mussatto, S. I., Aghbashlo, M., Tabatabaei, M., and Lam, S. S. (2020). A comprehensive review of engineered biochar: Production, characteristics, and environmental applications, Journal of Cleaner Production, 270, 122462. https://doi.org/10.1016/j.jclepro.2020.122462
  40. Park, H. (2003). Development of industrialization technology with starfish, Food industry and nutrition, 8(3), 18-25.
  41. Park, M. H., Lee, G. R., Park, H. S., Jeong, S. J., and Kim, J. Y. (2018). Adsorption of lead and cadmium from wastewater utilizing nano zero valent iron supported by coffee ground, Journal of Korean Society Environmental Engineers, 40(2), 82-90. https://doi.org/10.4491/KSEE.2018.40.2.82
  42. Peng, H., Gao, P., Chu, G., Pan, B., Peng, J., and Xing, B. (2017). Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars, Environmental Pollution, 229, 846-853. https://doi.org/10.1016/j.envpol.2017.07.004
  43. Qiu, B., Tao, X., Wang, G., Li, W., Ding, X., and Chu, H. (2021). Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review, Journal of Analytical and Applied Pyrolysis, 155, 105081. https://doi.org/10.1016/j.jaap.2021.105081
  44. Saghatforoush, L. A., Sanati, S., Mehdizadeh, R., and Hasanzadeh, M. (2012). Solvothermal synthesis of Cd(OH)2 and CdO nanocrystals and application as a new electrochemical sensor for simultaneous determination of norfloxacin and lomefloxacin, Superlattices and Microstructures, 52 885-893. https://doi.org/10.1016/j.spmi.2012.07.019
  45. Shin, W. S., Na, K. R., and Kim, Y. K. (2015). Characteristics of stabilization and adsorption of heavy metal (As3+, Cr6+) by modified activated carbon, Journal of Navigation and Port Research, 39(3), 185-192. https://doi.org/10.5394/KINPR.2015.39.3.185
  46. Tizo, M. S., Blanco, L. A. V., Cagas, A. C. Q., Cruz, B. R. B. D., Encoy, J. C., Gunting, J. V., Arazo, R. O., and Mabayo, V. I. F. (2018). Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution, Sustainable Environment Research, 28, 326-332. https://doi.org/10.1016/j.serj.2018.09.002
  47. Wahab, R., Ansari, S. G., Kim, Y. S., Dar, M. A., and Shin, H. S. (2007). Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles, Journal of Alloys and Compounds, 461, 66-71. https://doi.org/10.1016/j.jallcom.2007.07.029
  48. Wang, H., Yuan, X., Zeng, G., Leng, L., Peng, X., Liao, K., Peng, L., and Xiao, Z. (2014). Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: Kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent, Environmental Science and Pollution Research, 21(19), 11552-11564. https://doi.org/10.1007/s11356-014-3025-2
  49. Witoon, T. (2011). Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent, Ceramics International, 37, 3291-3298. https://doi.org/10.1016/j.ceramint.2011.05.125
  50. Wu, Q., Chen, J., Clark, M., and Yu, Y. (2014). Adsorption of copper to different biogenic oyster shell structures, Applied Surface Science, 311, 264-272. https://doi.org/10.1016/j.apsusc.2014.05.054
  51. Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., and Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar, Environmental Science and Pollution Research, 20, 358-368. https://doi.org/10.1007/s11356-012-0873-5
  52. Zhu, B., Fan, T., and Zhang, D. (2008). Adsorption of copper ions from aqueous solution by citric acid modified soybean straw, Journal of Hazaradous Materials, 153, 300-308. https://doi.org/10.1016/j.jhazmat.2007.08.050