• Title/Summary/Keyword: Heuristic search

Search Result 538, Processing Time 0.026 seconds

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

Dispatching Rule based Job-Shop Scheduling Algorithm with Delay Schedule for Minimizing Total Tardiness (지연 스케쥴을 허용하는 납기최소화 잡샵 스케쥴링 알고리즘)

  • Kim, Jae-Gon;Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • This study focuses on a job-shop scheduling problem with the objective of minimizing total tardiness for the job orders that have different due dates and different process flows. We suggest the dispatching rule based scheduling algorithm to generate fast and efficient schedule. First, we show the delay schedule can be optimal for total tardiness measure in some cases. Based on this observation, we expand search space for selecting the job operation to explore the delay schedules. That means, not only all job operations waiting for process but also job operations not arrived at the machine yet are considered to be scheduled when a machine is available and it is need decision for the next operation to be processed. Assuming each job operation is assigned to the available machine, the expected total tardiness is estimated, and the job operation with the minimum expected total tardiness is selected to be processed in the machine. If this job is being processed in the other machine, then machine should wait until the job arrives at the machine. Simulation experiments are carried out to test the suggested algorithm and compare with the results of other well-known dispatching rules such as EDD, ATC and COVERT, etc. Results show that the proposed algorithm, MET, works better in terms of total tardiness of orders than existing rules without increasing the number of tardy jobs.

Scheduling of Printing Process in which Ink Color Changes Exist (잉크 색상 변화가 존재하는 인쇄 공정의 스케줄링)

  • Moon, Jae Kyeong;Uhm, Hyun Seop;Tae, Hyun Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.32-42
    • /
    • 2021
  • The printing process can have to print various colors with a limited capacity of printing facility such as ink containers that are needed cleaning to change color. In each container, cleaning time exists to assign corresponding inks, and it is considered as the setup cost required to reduce the increasing productivity. The existing manual method, which is based on the worker's experience or intuition, is difficult to respond to the diversification of color requirements, mathematical modeling and algorithms are suggested for efficient scheduling. In this study, we propose a new type of scheduling problem for the printing process. First, we suggest a mathematical model that optimizes the color assignment and scheduling. Although the suggested model guarantees global optimality, it needs a lot of computational time to solve. Thus, we decompose the original problem into sequencing orders and allocating ink problems. An approximate function is used to compute the job scheduling, and local search heuristic based on 2-opt algorithm is suggested for reducing computational time. In order to verify the effectiveness of our method, we compared the algorithms' performance. The results show that the suggested decomposition structure can find acceptable solutions within a reasonable time. Also, we present schematized results for field application.

A Modeling Methodology for Analysis of Dynamic Systems Using Heuristic Search and Design of Interface for CRM (휴리스틱 탐색을 통한 동적시스템 분석을 위한 모델링 방법과 CRM 위한 인터페이스 설계)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • Most real world systems contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of them. A two-step methodology comprised of clustering and then model creation is proposed for the analysis on time series data. An interface is designed for CRM(Customer Relationship Management) that provides user with 1:1 customized information using system modeling. It was confirmed from experiments that better clustering would be derived from model based approach than similarity based one. Clustering is followed by model creation over the clustered groups, by which future direction of time series data movement could be predicted. The effectiveness of the method was validated by checking how similarly predicted values from the models move together with real data such as stock prices.

A Heuristic Method of In-situ Drought Using Mass Media Information

  • Lee, Jiwan;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.168-168
    • /
    • 2020
  • This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.

  • PDF

A Data Allocation Method based on Broadcast Disks Using Indices over Multiple Broadcast Channels (다중방송 채널에서 인덱스를 이용한 브로드캐스트 디스크 기반의 데이타 할당 기법)

  • Lee, Won-Taek;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.272-285
    • /
    • 2008
  • In this paper, we concentrate on data allocation methods for multiple broadcast channels. When the server broadcasts data, the important issue is to let mobile clients access requested data rapidly. Previous works first sorted data by their access probabilities and allocate the sorted data to the multiple channels by partitioning them into multiple channels. However, they do not reflect the difference of access probabilities among data allocated in the same channel. This paper proposes ZGMD allocation method. ZGMD allocates data item on multiple channels so that the difference of access probability in the same channel is maximized. ZGMD allocates sorted data to each channels and applies Broadcast Disk in each channel. ZGMD requires a proper indexing scheme for the performance improvement. This is because in ZGMD method each channel got allocated both hot and cold data. As a result, the sequential search heuristic does not allow the mobile client to access hot data items quickly. The proposed index scheme is based on using dedicated index channels in order to search the data channel where the requested data is. We show that our method achieve the near-optimal performance in terms of the average access time and significantly outperforms the existing methods.

Exploring Cognitive Biases Limiting Rational Problem Solving and Debiasing Methods Using Science Education (합리적 문제해결을 저해하는 인지편향과 과학교육을 통한 탈인지편향 방법 탐색)

  • Ha, Minsu
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.935-946
    • /
    • 2016
  • This study aims to explore cognitive biases relating the core competences of science and instructional strategy in reducing the level of cognitive biases. The literature review method was used to explore cognitive biases and science education experts discussed the relevance of cognitive biases to science education. Twenty nine cognitive biases were categorized into five groups (limiting rational causal inference, limiting diverse information search, limiting self-regulated learning, limiting self-directed decision making, and category-limited thinking). The cognitive biases in limiting rational causal inference group are teleological thinking, availability heuristic, illusory correlation, and clustering illusion. The cognitive biases in limiting diverse information search group are selective perception, experimenter bias, confirmation bias, mere thought effect, attentional bias, belief bias, pragmatic fallacy, functional fixedness, and framing effect. The cognitive biases in limiting self-regulated learning group are overconfidence bias, better-than-average bias, planning fallacy, fundamental attribution error, Dunning-Kruger effect, hindsight bias, and blind-spot bias. The cognitive biases in limiting self-directed decision-making group are acquiescence effect, bandwagon effect, group-think, appeal to authority bias, and information bias. Lastly, the cognitive biases in category-limited thinking group are psychological essentialism, stereotyping, anthropomorphism, and outgroup homogeneity bias. The instructional strategy to reduce the level of cognitive biases is disused based on the psychological characters of cognitive biases reviewed in this study and related science education methods.

Optimal Moving Pattern Mining using Frequency of Sequence and Weights (시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사)

  • Lee, Yon-Sik;Park, Sung-Sook
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.79-93
    • /
    • 2009
  • For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.

  • PDF

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.