• Title/Summary/Keyword: Heterologous

Search Result 462, Processing Time 0.019 seconds

Enzymatic Characterization and Comparison of Two Steroid Hydroxylases CYP154C3-1 and CYP154C3-2 from Streptomyces Species

  • Subedi, Pradeep;Kim, Ki-Hwa;Hong, Young-Soo;Lee, Joo-Ho;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.464-474
    • /
    • 2021
  • Bacterial cytochrome P450 (CYP) enzymes are responsible for the hydroxylation of diverse endogenous substances with a heme molecule used as a cofactor. This study characterized two CYP154C3 proteins from Streptomyces sp. W2061 (CYP154C3-1) and Streptomyces sp. KCCM40643 (CYP154C3-2). The enzymatic activity assays of both CYPs conducted using heterologous redox partners' putidaredoxin and putidaredoxin reductase showed substrate flexibility with different steroids and exhibited interesting product formation patterns. The enzymatic characterization revealed good activity over a pH range of 7.0 to 7.8 and the optimal temperature range for activity was 30 to 37℃. The major product was the C16-hydroxylated product and the kinetic profiles and patterns of the generated hydroxylated products differed between the two enzymes. Both enzymes showed a higher affinity toward progesterone, with CYP154C3-1 demonstrating slightly higher activity than CYP154C3-2 for most of the substrates. Oxidizing agents (diacetoxyiodo) benzene (PIDA) and hydrogen peroxide (H2O2) were also utilized to actively support the redox reactions, with optimum conversion achieved at concentrations of 3 mM and 65 mM, respectively. The oxidizing agents affected the product distribution, influencing the type and selectivity of the CYP-catalyzed reaction. Additionally, CYP154C3s also catalyzed the C-C bond cleavage of steroids. Therefore, CYP154C3s may be a good candidate for the production of modified steroids for various biological uses.

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

  • Dao, Hoai Thu;Truong, Quang Lam;Do, Van Tan;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2020
  • Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

Expression of Heterologous Promoters in Aspersillus oryzae (Aspergillus oryzae에서의 이종 Promoter들의 발현)

  • Hahm, Young Tae;Kim, Hee Chung;Batt, Carl A.
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.38-45
    • /
    • 1995
  • The expression of Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpdA) and trpC promoters in A. oryzae were compared using E. coli lacZ gents fusions. The specific activities of the expressed E. coli $\beta$-galactosidase in A. oryzae transformants containing the A. nidulans gpdA promoter were around 2,000 units per ug of protein. The specific activities of transformants containing the A. nidulans trpC promoter were very low, ranging from 10.5 to 52.3 units per ug of protein. These results showed that the expression of the A. nidulans gpdA promoter in A. oryzae was approximately 70 times greater than the A. nidulans trpC promoter. In western blot analysis, immunoreactive bands of a imlilar molecular weight as the E. coli $\beta$-galactosidase were observed in A. oryzae carrying the gpdA-lacZ fusion and to a lesser intensity in those carrying the tvpC-lacZ fusion. Southern analysis showed that the higher expression of the gpdA-lacZ fusion as compared to the trpC-lacZ fusion was not due a greater number of integrated plasmids.

  • PDF

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Heterologous Expression and Characterization of a Novel Exo-Polygalacturonase from Aspergillus fumigatus Af293 and Its Application in Juice Extraction

  • Chengwei Yang;Ting Zhang;Jing Zhu;Yunyi Wei;Furong Zhu;Zhong Cheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.533-542
    • /
    • 2023
  • Exo-polygalacturonase (exo-PG) hydrolyzes pectin acids and liberates mono-galacturonate, which plays an important role in juice extraction, and has rarely been reported. Exo-PG (AfumExoPG28A) from Aspergillus fumigatus belongs to the glycoside hydrolase 28 family. In this study, its gene was cloned and the protein was expressed and secreted in Pichia pastoris with a maximal activity of 4.44 U/ml. The optimal temperature and pH of AfumExoPG28A were 55℃ and 4.0, respectively. The enzyme exhibited activity over almost the entire acidic pH range (>20.0% activity at pH 2.5-6.5) and remained stable at pH 2.5-10.0 for 24 h. The Km and Vmax values of AfumExoPG28A were calculated by the substrate of polygalacturonic acid as 25.4 mg/ml and 23.6 U/mg, respectively. Addition of AfumExoPG28A (0.8 U/mg) increased the light transmittance and juice yield of plantain pulp by 11.7% and 9%, respectively. Combining AfumExoPG28A (0.8 U/mg) with an endo-PG (0.8 U/mg) from our laboratory, the enzymes increased the light transmittance and juice yield of plantain pulp by 45.7% and 10%, respectively. Thus, the enzyme's potential value in juice production was revealed by the remarkable acidic properties and catalytic activity in fruit pulp.

Heterologous Expression and Characterization of a Thermostable α-L-Rhamnosidase from Thermoclostridium stercorarium subsp. thermolacticum DSM 2910 and Its Application in the Biotransformation of Rutin

  • Lin Ge;Yingying Liu;Fangming Zhou;Lingling Zhan;Linguo Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1521-1530
    • /
    • 2023
  • An α-L-rhamnosidase gene from Thermoclostridium. stercorarium subsp. thermolacticum DSM 2910 (TstRhaA) was cloned and expressed. The maximum TstRhaA activity of the protein reached 25.2 U/ml, and the molecular mass was approximately 106.6 kDa. The protein was purified 8.0-fold by Ni-TED affinity with an overall recovery of 16.6% and a specific activity of 187.9 U/mg. TstRhaA activity was the highest at 65℃ and pH 6.5. In addition, it exhibited excellent thermal stability, better pH stability, good tolerance to low concentrations of organic reagents, and high catalytic activity for p-nitrophenyl-α-L-rhamnopyranoside (pNPR). Substrate specificity studies showed that TstRhaA exhibited a high specific activity for rutin. At 60℃, pH 6.5, and 0.3 U/ml enzyme dosage, 60 g/l rutin was converted to 45.55 g/l isoquercitrin within 150 min. The molar conversion rate of rutin and the yield of isoquercitrin were 99.8% and 12.22 g/l/h, respectively. The results suggested that TstRhaA could be used for mass production of isoquercitrin.

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

Development of pSJE6c, an Expression Vector for Kimchi Lactic Acid Bacteria, and Heterologous Gene Expression Using the Vector (김치유산균용 발현벡터 pSJE6c 개발과 이를 이용한 외래 유전자 발현)

  • Lee, Kang-Wook;Park, Ji-Yeong;Lee, Ji-Yeon;Lee, Hwang-A;Baek, Chang-Un;Jo, Hyeon-Deok;Kim, Joo-Yeon;Kwon, Gun-Hee;Chun, Ji_Yeon;Kim, Jeong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.389-398
    • /
    • 2009
  • Development of expression vectors is important for the basic and applied researches on kimchi LAB (lactic acid bacteria). An expression vector, pSJE6c was constructed by inserting P6C promoter sequence from Lactococcus lactis into pSJE, a shuttle vector for E. coli and Leuconostoc species. To test the efficiency of pSJE6c, aga ($\alpha$-galactosidase) and lacZ ($\beta$-galactosidase) genes were expressed in Lactobacillus brevis 2.14. Compared to the pSJE, expression levels of both genes were increased, indicating P6C promoter was better than indigenous promoters. Enzyme activities of L. brevis cells harboring pSJE6caga (pSJE6c with aga) or pSJE6Z (pSJE6c with lacZ) were 1.5-2 fold higher than those with pSJEaga (pSJE with aga) or pSJEZ (pSJE with lacZ). More RNA transcripts were detected in cells harboring pSJE6c based recombinant plasmid. The results indicated that heterologous gene expressions in kimchi LAB could be improved significantly by use of efficient expression vectors.

Antigenicity of Whey Protein Hydrolysates against Rabbit Anti ${\beta}-Lactoglobulin$ Antiserum (토끼 항 ${\beta}-Lactoglobulin$ 항혈청에 대한 유청단백질 가수분해물의 항원성)

  • Lee, Soo-Won;Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Shon, Dong-Hwa;Lee, Jae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.532-538
    • /
    • 1994
  • In order to investigate the lowering effects of in vitro enzymatic hydrolysis by the treatment of chymotrypsin, trypsin, pancreatin, or protease from Aspergillus oryzae on the antigenicity of whey protein(WPI) against rabbit anti ${\beta}-LG$ antiserum, competitive inhibition ELISA(cELISA) and passive cutaneous anaphylaxis(PCA) test using guinea pig were performed. The results of cELISA showed that the monovalent antigenicity of the whey protein hydrolysates(WPH) to the antiserum was decreased to $10^{-1.7}{\sim}10^{-4.1}$ and less by the hydrolysis. Especially, the antigenicity of OUP(hydrolysate by protease from Asp. oryzae with preteatment of pepsin) was found almost to be removed. By the heterologous PCA the polyvalent antigenicity of the WPH was decreased to $1/2{\sim}1/128$ and less. Especially, the polyvalent antigenicity of OUN(hydrolysate by protease from Asp. oryzae without preteatments) was found almost to be removed, although OUN did not have so high degree of hydrolysis(DH) or so low monovalent antigenicity (reduced to $10^{-3.2}$). Therefore, this result was assumed to come from effective destruction of antigenic determinants on ${\beta}-LG$ in WPI, not to produce polyvalent antigenic peptides that are closely associated with induction of allergy. This finding suggested that WPH prepared by the treatment of microorganic protease from Asp. oryzae would be a material for hypoallergenic infant formula due to the removal of the polyvalent antigenicity of ${\beta}-LG$, the major milk allergen in WPI.

  • PDF

A Novel Polyclonal Antiserum against Toxoplasma gondii Sodium Hydrogen Exchanger 1

  • Xiao, Bin;Kuang, Zhenzhan;Zhan, Yanli;Chen, Daxiang;Gao, Yang;Li, Ming;Luo, Shuhong;Hao, Wenbo
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • The sodium hydrogen exchanger 1 (NHE1), which functions in maintaining the ratio of $Na^+$ and $H^+$ ions, is widely distributed in cell plasma membranes. It plays a prominent role in pH balancing, cell proliferation, differentiation, adhesion, and migration. However, its exact subcellular location and biological functions in Toxoplasma gondii are largely unclear. In this study, we cloned the C-terminal sequence of T. gondii NHE1 (TgNHE1) incorporating the C-terminal peptide of NHE1 (C-NHE1) into the pGEX4T-1 expression plasmid. The peptide sequence was predicted to have good antigenicity based on the information obtained from an immune epitope database. After induction of heterologous gene expression with isopropyl-b-D-thiogalactoside, the recombinant C-NHE1 protein successfully expressed in a soluble form was purified by glutathione sepharose beads as an immunogen for production of a rabbit polyclonal antiserum. The specificity of this antiserum was confirmed by western blotting and immunofluorescence. The antiserum could reduce T. gondii invasion into host cells, indicated by the decreased TgNHE1 expression in T. gondii parasites that were pre-incubated with antiserum in the process of cell entry. Furthermore, the antiserum reduced the virulence of T. gondii parasites to host cells in vitro, possibly by blocking the release of $Ca^{2+}$. In this regard, this antiserum has potential to be a valuable tool for further studies of TgNHE1.