References
- Guengerich FP. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1: 359-366. https://doi.org/10.1038/nrd792
- Girvan HM, Munro AW. 2016. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr. Opin. Chem. Biol. 31: 136-145. https://doi.org/10.1016/j.cbpa.2016.02.018
- Isin EM, Guengerich FP. 2007. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim. Biophys. Acta 1770: 314-329. https://doi.org/10.1016/j.bbagen.2006.07.003
- Urlacher V, Schmid RD. 2002 Biotransformations using prokaryotic P450 monooxygenases. Curr. Opin. Biotechnol. 13: 557-564. https://doi.org/10.1016/S0958-1669(02)00357-9
- Ortiz de Montellano PR. 2010. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110: 932-948. https://doi.org/10.1021/cr9002193
- Ortiz de Montellano PR. 2015. Cytochrome P450: Structure, mechanism, and biochemistry. fourth edition. Springer Science & Business Media.
- Modi AR, Dawson JH. 2015. Oxidizing intermediates in P450 catalysis: a case for multiple oxidants. Adv. Exp. Med. Biol. 851: 63-81. https://doi.org/10.1007/978-3-319-16009-2_2
- Munro AW, McLean KJ, Grant JL, Makris TM. 2018. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem. Soc. Trans. 46: 183-196. https://doi.org/10.1042/BST20170218
- Dangi B, Park H, Oh TJ. 2018. Effects of alternative redox partners and oxidizing agents on CYP154C8 catalytic activity and product distribution. Chembiochem 19: 2273-2282. https://doi.org/10.1002/cbic.201800284
- Strohmaier SJ, Baek JM, De Voss JJ, Jurva U, Andersson S, Gillam EMJ. 2020. An inexpensive, efficient alternative to NADPH to support catalysis by thermostable Cytochrome P450 enzymes. ChemCatChem 12: 1750-1761. https://doi.org/10.1002/cctc.201902235
- Sultana N. 2018. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 136: 76-92. https://doi.org/10.1016/j.steroids.2018.01.007
- Straub RH, Cutolo M. 2016. Glucocorticoids and chronic inflammation. Rheumatol. 55: ii6-ii14. https://doi.org/10.1093/rheumatology/kew348
- Benagiano M, Bianchi P, D'Elios MM, Brosens I, Benagiano G. 2019. Autoimmune diseases: Role of steroid hormones. Best Pract. Res. Clin. Obstet. Gynaecol. 60: 24-34. https://doi.org/10.1016/j.bpobgyn.2019.03.001
- Clark AS, Henderson LP. 2003. Behavioral and physiological responses to anabolic-androgenic steroids. Neurosci. Biobehav. Rev. 27: 413-436. https://doi.org/10.1016/S0149-7634(03)00064-2
- Donova MV, Egorova OV. 2012. Microbial steroid transformations: Current state and prospects. Appl. Microbiol. Biotechnol. 96: 1423-1447. https://doi.org/10.1007/s00253-012-4078-0
- Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, et al. 2009. Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol. Adv. 27: 686-714. https://doi.org/10.1016/j.biotechadv.2009.05.001
- Dangi B, Kim KH, Kang SH, Oh TJ. 2018. Tracking down a new steroid-hydroxylating promiscuous Cytochrome P450: CYP154C8 from Streptomyces sp. W2233-SM. Chembiochem 19: 1066-1077. https://doi.org/10.1002/cbic.201800018
- Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. 2003. Microbial conversion of steroid compounds: Recent developments. Enzyme Microb. Technol. 32: 688-705. https://doi.org/10.1016/S0141-0229(03)00029-2
- Shah SAA, Sultan S, Adnan HS. 2013. A whole-cell biocatalysis application of steroidal drugs. Orient. J. Chem. 29: 389-403. https://doi.org/10.13005/ojc/290201
- Donova MV. 2007. Transformation of steroids by actinobacteria: A review. Appl. Biochem. 43: 5-18.
- Hannemann F, Bichet A, Ewen KM, Bernhardt R. 2007. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
- Lee GY, Kim DH, Kim D, Ahn T, Yun CH. 2015. Functional characterization of steroid hydroxylase CYP106A1 derived from Bacillus megaterium. Arch. Pharm. Res. 38: 98-107. https://doi.org/10.1007/s12272-014-0366-9
- Jozwik IK, Kiss FM, Gricman L, Abdulmughni A, Brill E, Zapp J, et al. 2016. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J. 22: 4128-4148.
- Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y. 2014. Regio- and stereospecific hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl. Environ. Microbiol. 80: 1371-1379. https://doi.org/10.1128/AEM.03504-13
- Dangi B, Lee CW, Kim KH, Park SH, Yu EJ, Jeong CS, et al. 2019. Characterization of two steroid hydroxylases from different Streptomyces spp. and their ligand-bound and -unbound crystal structures. FEBS J. 286: 1683-1699. https://doi.org/10.1111/febs.14729
- Bracco P, Janssen DB, Schallmey A. 2013. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb. Cell Fact. 12: 95. https://doi.org/10.1186/1475-2859-12-95
- Khatri Y, Ringle M, Lisurek M, VonKries JP, Zapp J, Bernhardt R. 2016. Substrate hunting for the Myxobacterial CYP260A1 revealed new 1α-hydroxylated products from C-19 steroids. Chembiochem 17: 90-101. https://doi.org/10.1002/cbic.201500420
- Nicholas KB, Nicholas HB, Deerfield D, Gauch H. 1997. Genedoc: a tool for editing and annotating multiple sequence alignments. Computer Science, Biology.
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. Vol. 97-166.
- Bhattarai S, Liou K, Oh TJ. 2013. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539: 63-69. https://doi.org/10.1016/j.abb.2013.09.008
- Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. i. evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378. https://doi.org/10.1016/S0021-9258(20)82244-3
- Guengerich FP, Martin MV, Sohl CD, Cheng Q. 2009. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4: 1245-1251. https://doi.org/10.1038/nprot.2009.121
- Roome PW, Philley JC, Peterson JA. 1983. Purification and properties of putidaredoxin reductase. J. Biol. Chem. 258: 2593-2598. https://doi.org/10.1016/S0021-9258(18)32967-3
- Williams JW, Morrison JF. 1979. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63: 437-467. https://doi.org/10.1016/0076-6879(79)63019-7
- Dangi B, Oh TJ. 2019. Bacterial CYP154C8 catalyzes carbon-carbon bond cleavage in steroids. FEBS Lett. 593: 67-79. https://doi.org/10.1002/1873-3468.13297
- Poulos TL. 2014. Heme enzyme structure and function. Chem. Rev. 114: 3919-3962. https://doi.org/10.1021/cr400415k
- Mak PJ, Denisov IG. 2018. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim. Biophys. Acta Proteins Proteom. 1866: 178-204. https://doi.org/10.1016/j.bbapap.2017.06.021
- Jung C, Ristau O, Rein H. 1991. The high-spin/low-spin equilibrium in cytochrome P-450 - A new method for determination of the high-spin content. Biochim. Biophys. Acta Protein Struct. Mol. 1076: 130-136.
- Denisov IG, Makris TM, Sligar SG, Schlichting I. 2005. Structure and chemistry of cytochrome P450. Chem. Rev. 105: 2253-2278. https://doi.org/10.1021/cr0307143
- Herzog K, Bracco P, Onoda A, Hayashi T, Hoffmann K, Schallmey A. 2014. Enzyme-substrate complex structures of CYP154C5 shed light on its mode of highly selective steroid hydroxylation. Acta Crystallogr. Sect. D Biol. Crystallogr. 70: 2875-2889. https://doi.org/10.1107/S1399004714019129
- Hlavica P, Schulze J, Lewis DFV. 2003. Functional interaction of cytochrome P450 with its redox partners: A critical assessment and update of the topology of predicted contact regions. J. Inorg. Biochem. 96: 279-297. https://doi.org/10.1016/S0162-0134(03)00152-1
- Nadler SG, Strobel HW. 1988. Role of electrostatic interactions in the reaction of NADPH-cytochrome P-450 reductase with cytochromes P-450. Arch. Biochem. Biophys. 261: 418-429. https://doi.org/10.1016/0003-9861(88)90358-X
- Yun CH, Song M, Ahn T, Kim H. 1996. Conformational change of cytochrome P450 1A2 induced by sodium chloride. J. Biol. Chem. 271: 31312-31316. https://doi.org/10.1074/jbc.271.49.31312
- Davydov DR, Kariakin AA, Petushkova NA, Peterson JA. 2000. Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system. Biochemistry 39: 6489-6497. https://doi.org/10.1021/bi992936u
- Hayashi T, Harada K, Sakurai K, Shimada H, Hirota S. 2009. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site. J. Am. Chem. Soc. 131: 1398-1400. https://doi.org/10.1021/ja807420k
- Thevis M, Schanzer W. 2005. Mass spectrometric analysis of androstan-17β-ol-3-one and androstadiene-17β-ol-3-one isomers. J. Am. Soc. Mass Spectrom. 16: 1660-1669. https://doi.org/10.1016/j.jasms.2005.06.007
- Li H, Sheng LP, Wang B, Yang ZL, Liu SY. 2015. An optimized method for corticosterone analysis in mouse plasma by ultra-performance liquid chromatography-full-scan high-resolution accurate mass spectrometry. J. Chromatogr. Sci. 53: 285-294. https://doi.org/10.1093/chromsci/bmu056
- Yamazaki H, Ueng YF, Shimada T, Guengerich FP. 1995. Roles of divalent metal ions in oxidations catalyzed by recombinant Cytochrome P450 3A4 and replacement of NADPH-Cytochrome P450 reductase with other flavoproteins, ferredoxin, and oxygen surrogates. Biochemistry 34: 8380-8389. https://doi.org/10.1021/bi00026a02
- Gustafsson JA, Bergman J. 1976. Iodine- and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P-450-dependent fatty acid hydroxylation reactions in rat liver microsomes. FEBS Lett. 70: 276-289. https://doi.org/10.1016/0014-5793(76)80774-0
- Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, Liu A. 2017. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway. J. Biol. Chem. 292: 13645-13657. https://doi.org/10.1074/jbc.M117.794099
- Gelb MH, Heimbrook DC, Malkonen P, Sligar SG. 1982. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the Cytochrome P450cam monoxygenase system. Biochemistry 21: 370-377. https://doi.org/10.1021/bi00531a026
- Berg A, Ingelman-Sundberg M, Gustafsson JA. 1979. Purification and characterization of cytochrome P-450meg. J. Biol. Chem. 254: 5264-5271. https://doi.org/10.1016/S0021-9258(18)50589-5
- Hrycay EG, Bandiera SM. 2012. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch. Biochem. Biophys. 522: 71-89. https://doi.org/10.1016/j.abb.2012.01.003