• Title/Summary/Keyword: Heterologous

Search Result 462, Processing Time 0.026 seconds

Differential Expression of Laccase Genes in Pleurotus ostreatus and Biochemical Characterization of Laccase Isozymes Produced in Pichia pastoris

  • Park, Minsa;Kim, Minseek;Kim, Sinil;Ha, Byeongsuk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.280-287
    • /
    • 2015
  • In this study, transcriptome analysis of twelve laccase genes in Pleurotus ostreatus revealed that their expression was differentially regulated at different developmental stages. Lacc5 and Lacc12 were specifically expressed in fruiting bodies and primordia, respectively, whereas Lacc6 was expressed at all developmental stages. Lacc1 and Lacc3 were specific to the mycelial stage in solid medium. In order to investigate their biochemical characteristics, these laccases were heterologously expressed in Pichia pastoris using the pPICHOLI-2 expression vector. Expression of the laccases was facilitated by intermittent addition of methanol as an inducer and sole carbon source, in order to reduce the toxic effects associated with high methanol concentration. The highest expression was observed when the recombinant yeast cells were grown for 5 days at $15^{\circ}C$ with intermittent addition of 1% methanol at a 12-hr interval. Investigation of enzyme kinetics using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate revealed that the primordium-specific laccase Lacc12 was 5.4-fold less active than Lacc6 at low substrate concentration with respect to ABTS oxidation activity. The optimal pH and temperature of Lacc12 were 0.5 pH units and $5^{\circ}C$higher than those of Lacc6. Lacc12 showed maximal activity at pH 3.5 and $50^{\circ}C$, which may reflect the physiological conditions at the primordiation stage.

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

Controlled Expression and Secretion of Aspergillus oryzae Alkaline Protease in Aspergillus nidulans

  • Kim, Eun-Ah;Lee, Jeong-Goo;Whang, Mi-Kyung;Park, Hee-Moon;Kim, Jeong-Yoon;Chae, Suhn-Kee;Maeng, Pil-Jae
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • In an effort to develop an efficient expression and secretion system for heterologous proteins in Aspergilius nidulans, the PCR-amplified coding sequence for alkaline pretense (AlpA) of A. oryzae was cloned into a fungal expression vector downstream of A. nidulans aicA (alcohol dehydrogenase) promoter to yield pRAAlp. Transformation of A. nidulans with pRAAlp gave stable transformants harboring various copy numbers (3 to 10) of integrated alpA gene, from among which 6 representatives were selected. On a medium containing 0.8% ammonium sulfate that represses the expression of the host's own pretense, the alcA prumoter-controlled AlpA expression was strongly induced by threonine but repressed by glucose. The level of AlpA secretion was highest (approximately 666 mU/ml) in transformant ALP6 containing the largest copy number integrated alpA. However, the level of AlpA secretion was not necessarily proportional to the copy numbers of the integrated alpA genes. The N-terminal sequence or the secreted mature AlpA was determined to be Gly-Leu-Thr-Thr-Gln-Lys-Ser and its molecular mass to be approximately 34 kDa, indicating that AlpA is properly processed by the removal of 121 N-terminal amino acids.

  • PDF

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

Fed-batch Cultivation of Escherichia coli YK537 (pAET-8) for Production of phoA Promoter-controlled Human Epidermal Growth Factor

  • Wang Yonggang;Du Peng;Gan Renbao;Li Zhimin;Ye Qin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.149-154
    • /
    • 2005
  • Secretion of the expressed heterologous proteins can reduce the stress to the host cells and is beneficial to their recovery and purification. In this study, fed-batch cultures of Escherichia coli YK537 (pAET-8) were conducted in a 5-L fermentor for the secretory production of human epidermal growth factor (hEGF) whose expression was under the control of alkaline phosphatase promoter. The effects of feeding of glucose and complex nitrogen sources on hEGF production were investigated. When the fed-batch culture was conducted in a chemically de-fined medium, the cell density was 9.68 g/L and the secreted hEGF was 44.7 mg/L in a period of 60 h. When a complex medium was used and glucose was added in pH-stat mode, the secreted hEGF was improved to 345 mg/L. When the culture was fed with glucose at a constant specific rate of $0.25\;gg^{-1}h^{-1}$, hEGF reached 514 mg/L. The effects of adding a solution containing yeast extract and tryptone were further studied. Different rate of the nitrogen source feeding resulted in different levels of phosphate and acetic acid formation, thus affected hEGF expression. At the optimal feeding rate, hEGF production achieved 686 mg/L.

Eicosapentaenoic Acid (EPA) Biosynthetic Gene Cluster of Shewanella oneidensis MR-1: Cloning, Heterologous Expression, and Effects of Temperature and Glucose on the Production of EPA in Escherichia coli

  • Lee, Su-Jin;Jeong, Young-Su;Kim, Dong-Uk;Seo, Jeong-Woo;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.510-515
    • /
    • 2006
  • The putative EPA synthesis gene cluster was mined from the entire genome sequence of Shewanella oneidensis MR-1. The gene cluster encodes a PKS-like pathway that consists of six open reading frames (ORFs): ORFSO1602 (multi-domain beta-ketoacyl synthase, KS-MAT-4ACPs-KR), ORFSO1600 (acyl transferase, AT), ORFSO1599 (multi-domain beta-ketoacyl synthase, KS-CLF-DH-DH), ORFSO1597 (enoyl reductase, ER), ORFSO1604 (phosphopentetheine transferase, PPT), and ORFSO1603 (transcriptional regulator). In order to prove involvement of the PKS-like machinery in EPA synthesis, a 20.195-kb DNA fragment containing the genes was amplified from S. oneidensis MR-1 by the long-PCR method. Its identity was confirmed by the methods of restriction enzyme site mapping and nested PCR of internal genes orfSO1597 and orfSO1604. The DNA fragment was cloned into Escherichia coli using cosmid vector SuperCos1 to form pCosEPA. Synthesis of EPA was observed in four E. coli clones harboring pCosEPA, of which the maximum yield was 0.689% of the total fatty acids in a clone designated 9704-23. The production yield of EPA in the E. coli clone was affected by cultivation temperature, showing maximum yield at $20^{\circ}C$ and no production at $30^{\circ}C$ or higher. In addition, production yield was inversely proportional to glucose concentration of the cultivation medium. From the above results, it was concluded that the PKS-like modules catalyze the synthesis of EPA. The synthetic process appears to be subject to regulatory mechanisms triggered by various environmental factors. This most likely occurs via the control of gene expression, protein stability, or enzyme activity.

A New Signal Sequence for Recombinant Protein Secretion in Pichia pastoris

  • Govindappa, Nagaraj;Hanumanthappa, Manjunatha;Venkatarangaiah, Krishna;Periyasamy, Sankar;Sreenivas, Suma;Soni, Rajeev;Sastry, Kedarnath
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.337-345
    • /
    • 2014
  • Pichia pastoris is one of the most widely used expression systems for the secretory expression of recombinant proteins. The secretory expression in P. pastoris usually makes use of the prepro $MAT{\alpha}$ sequence from Saccharomyces cerevisiae, which has a dibasic amino acid cleavage site at the end of the signal sequence. This is efficiently processed by Kex2 protease, resulting in the secretion of high levels of proteins to the medium. However, the proteins that are having the internal accessible dibasic amino acids such as KR and RR in the coding region cannot be expressed using this signal sequence, as the protein will be fragmented. We have identified a new signal sequence of 18 amino acids from a P. pastoris protein that can secrete proteins to the medium efficiently. The PMT1-gene-inactivated P. pastoris strain secretes a ~30 kDa protein into the extracellular medium. We have identified this protein by determining its N-terminal amino acid sequence. The protein secreted has four DDDK concatameric internal repeats. This protein was not secreted in the wild-type P. pastoris under normal culture conditions. We show that the 18-amino-acid signal peptide at the N-terminal of this protein is useful for secretion of heterologous proteins in Pichia.

Osteogenic Differentiation of Human Adipose-derived Stem Cells within PLGA(Poly(D,L-lactic-co-glycolic acid)) Scaffold in the Nude Mouse (누드 마우스에서 Poly(D,L-lactic-co-glycolic acid) (PLGA) 지지체 내 인체 지방줄기세포의 골성분화)

  • Yoo, Gyeol;Cho, Sung Don;Byeon, Jun Hee;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Purpose: The object of this study was to evaluate the development of continuous osteogenic differentiation and bone formation after the subcutaneous implantation of the tissue-engineered bone, in vitro. Methods: Human adipose-derived stem cells were obtained by proteolytic digestion of liposuction aspirates. Adipose-derived stem cells were seeded in PLGA scaffolds after being labeled with PKH26 and cultured in osteogenic differentiation media for 1 month. The PLGA scaffolds with osteogenic stimulated adipose-derived stem cells were implanted in subcutaneous layer of four nude mice. Osteogenesis was assessed by RT-PCR for mRNA of osteopontin and bone sialoprotein(BSP), and immunohistochemistry for osteocalcin, and von Kossa staining for calcification of extracellular matrix at 1 and 2 months. Results: Implanted PLGA scaffold with adipose-derived stem cells were well vascularized, and PLGA scaffolds degraded and were substituted by host tissues. The mRNA of osteopontin and BSP was detected by RT-PCR in both osteogenic stimulation group and also osteocalcin was detected by immunohistochemistry at osteogenic stimulation 1 and 2 months, but no calcified extracellular deposit in von Kossa stain was found in all groups. Conclusion: In vivo, it could also maintain the characteristics of osteogenic differentiation that adipose-derived stem cells within PLGA scaffold after stimulation of osteogenic differentiation in vitro, but there were not normal bone formation in subcutaneous area. Another important factor to consider is in vivo, heterologous environment would have negative effect on bone formation as.[p1]

Xenograft Failure of Pulmonary Valved Conduit Cross-linked with Glutaraldehyde or Not Cross-linked in a Pig to Goat Implantation Model

  • Kim, Dong Jin;Kim, Yong Jin;Kim, Woong-Han;Kim, Soo-Hwan
    • Journal of Chest Surgery
    • /
    • v.45 no.5
    • /
    • pp.287-294
    • /
    • 2012
  • Background: Biologic valved grafts are important in cardiac surgery, and although several types of graft are currently available, most commercial xenografts tend to cause early disfiguration due to intimal proliferation and calcification. We studied the graft failure patterns on non-fixed and glutaraldehyde-fixed pulmonary xenograft in vivo animal experiment. Materials and Methods: Pulmonary valved conduits were obtained from the right ventricular outflow tract of eleven miniature pigs. The grafts were subjected to 2 different preservation methods; with or without glutaraldehyde fixation: glutaraldehyde fixation (n=7) and non-glutaraldehyde fixation (n=4). The processed explanted pulmonary valved grafts of miniature pig were then transplanted into eleven goats. Calcium quantization was achieved in all of the explanted xenograft, hemodynamic, histopathologic and radiologic evaluations were performed in the graft which the transplantation period was over 300 days (n=7). Results: Grafts treated with glutaraldehyde fixation had more calcification and conduit obstruction in mid-term period. Calcium deposition also appeared much higher in the glutaraldehyde treated graft compared to the non-glutaraldehyde treated graft (p<0.05). Conclusion: The present study suggests that xenografts prepared using glutaraldehyde fixation alone appeared to have severe calcification compared to the findings of non-glutaraldehyde treated xenografts and to be managed with proper anticalcification treatment and novel preservation methods. This experiment gives the useful basic chemical, histologic data of xenograft failure model with calcification for further animal study.