• Title/Summary/Keyword: Heterologous

Search Result 462, Processing Time 0.025 seconds

A Study on Antigenicity of G009, a Polysaccharide Isolated from Gandoderma lucidum IY009 in Mice and Guinea pigs (영지의 단백다당체 G009의 마우스와 기니픽에 있어서의 항원성에 관한 연구)

  • Park, Jong-Il;Jeong, Taw-Cheon;Cha, Shin-Woo;Shin, Ho-Chul;Jeong, Hoon;Kim, Su-Ung;Han, Sang-Seop
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • In the present study, the antigenic potential of G009, a polysaccharide isolated from Ganoderma lucidum IY009, was determined in BALB/C mice and Hartley guinea pigs. Antigenicity tests, including passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA) and indirect hemagglutination test (IHA) were performed according to the established guidelines of National Institute of Safety Research. The results were as follows: 1. Mice showed no production of antibodies against G009 sensitized with an adjuvant, aluminum hydroxide gel (alum), when judged by the heterologous PCA test in rats. Meanwhile, antibodies against ovalbumin (OVA) sensitized with alum were clearly detected. 2. In the studies with guinea pigs, both the sensitization of G009 alone and of G009 with complete Freund's adjutant (CFA) did not produce positive reactions in homologous PCA. In the case of ASA, however, G009 alone and G009 with CFA produced positive reactions. 3. No G009 specific reaction was observed in an IHA assay using sera isolated from G009 sensitized mice. These findings suggest that G009 have no antigenicity potential in mice but may have weak antigenicity in guinea pjgs.

  • PDF

A Multiplex PCR Assay for the Detection of Food-borne Pathogens in Meat Products

  • Kim, Hyoun-Wook;Kim, Ji-Hyun;Rhim, Seong-Ryul;Lee, Kyung-A;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.590-596
    • /
    • 2010
  • Meat and meat products are a potential source of food-borne pathogens, including Staphylococcus aureus, Salmonella spp., Escherichia coli O157:H7, and Bacillus cereus. A sensitive and specific PCR assay for the detection of these pathogens in meat and meat products was developed in this study, as part of a broader effort to reduce the potential health hazards posed by these pathogens. Initially, PCR conditions were standardized with purified DNA. Under standard conditions, the detection level for PCR was as low as 10 pg of purified bacterial DNA. After overnight growth of bacteria in a broth medium, as few as $10^2$ CFU of bacteria were detected by PCR assay. The primers employed in the PCR assay were found to be highly specific for individual organisms, and evidenced no cross-reactivity with heterologous organisms. Additionally, the multiplex PCR assays also amplified some target genes from the four pathogens, and multiplex amplification was obtained from as little as 10 pg of DNA, thus illustrating the excellent specificity and high sensitivity of the assay. In conclusion, this PCR-based technique provides a sensitive and specific method for the detection of S. aureus, Salmonella spp., E. coli O157:H7, and B. cereus in meat and meat products.

Plasmid Propagation and Heterologous Gene Expression in Recombinant Yeast (효모균에서의 Plasmid 번식체계와 혼성유전자 발현)

  • 홍억기
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.133-142
    • /
    • 1993
  • The effects of genetic and environmental factors on productivity of a cloned protein were studied in recombinant Saccharomyces cerevisiae. Plasmid stability and copy level were very high for a $REP^+$ system(at ca. 10 generations, stability: 65-90%, plasmid copy number per cell: 40-200), whereas these were very low for a yep- system(at ca. 10 generations, stability: 30%, plasmid copy number per cell 20). In plasmids containing the $2{\mu}m$ circle genome, a $[cir^o]$ strain was a preferred host cell since the plasmid stability and the copy number in a $[cir^o]$ strain were higher than in a $[cir^+]$strain. Cloned gene expression was dependent on plasmid copy number and stability. The inducer (galactose) level played a very important role in cloned lacZ gene expression, showing that a galactose concentration of 0.8% was sufficient for induction of gene expression. Induction rate was very fast in the case of plasmids exhibiting high stability and copy number by a factor of 4 to 25. The time to reach the peak value of gene expression was longer when galactose was added at the start of fermentation (ca. 26 hours) than at the mid-exponential phase (ca. 6 hours). Glucose repression was reduced by a factor of 2 to 5 as the relative inducer level increased.

  • PDF

The Optimization of Recombinant Protein Production using S. cerevisiae Mutant Y334 Suitable for GAL Promoter (GAL promoter에 적합한 효모변이주 Y334를 이용한 재조합 단백질 생산 최적화 방법 개발)

  • 강환구;전희진;이문원
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.181-187
    • /
    • 2000
  • The production of heterologous protein using GAL promoter in conventional S. cerevisiae has several problems to s이ve for c commercialization. In this research, S. cerevisiae mutant(reg1-501, gaI1), which cannot use galactose and has alleviated g glucose repression level, is used as host for optimizing induction of GAL promoter. In this experiment, the effects of specific g growth rate on specific recombinant protein expression rate were tested in both cases and optimum fed batch fermentation m method was obtained in both cases. Through these experiments, optimum condition of recombinant protein production by G GAL promoter using S. cerevisiae mutant (reg1-501, gal1) were found.

  • PDF

Cloning and Expression of Yak Active Chymosin in Pichia pastoris

  • Luo, Fan;Jiang, Wei Hua;Yang, Yuan Xiao;Li, Jiang;Jiang, Ming Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1363-1370
    • /
    • 2016
  • Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector $pPICZ{\alpha}A$, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production.

Improving Soluble Expression of β-Galactosidase in Escherichia coli by Fusion with Thioredoxin

  • Nam, E.S.;Jung, H.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1751-1757
    • /
    • 2004
  • Recombinant heterologous proteins can be produced as insoluble aggregates partially or perfectly inactive in Escherichia coli. One of the strateges to improve the solubility of recombinant proteins is fusion with a partner that is excellent in producing soluble fusion proteins. To improve the production of soluble $\beta$-galactosidase, the gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase (KNOUC112 $\beta$-gal) was fused with thioredoxin gene, and optimization of its expression in E. coli TOP10 was performed. KNOUC112 $\beta$-gal in pET-5b was isolated out, fused with thioredoxin gene in pThioHis C, and transformed to E. coli TOP10. The $\beta$-galactosidase fused with thioredoxin was produced in E. coli TOP10 as dimer and trimer. The productivity of fusion $\beta$ -galactosidase expressed via pThioHis C at 37$^{\circ}C$ was about 5 times higher than that of unfused $\beta$-galactosidase expressed via pET-5b at 37$^{\circ}C$. Inclusion body of $\beta$-galactosidase was formed highly, regardless of the induction by IPTG when KNOUC112 $\beta$ -gal was expressed via pET-5b at 37$^{\circ}C$. Fusion $\beta$ -galactosidase expressed at 37$^{\circ}C$ via pThioHis C without the induction by IPTG was soluble, but the induction by IPTG promoted the formation of inclusion body. Lowering the incubation temperature for the expression of fusion gene under 25$^{\circ}C$ prevented the formation of inclusion body, optimally at 25$^{\circ}C$. 0.07 mM of IPTG was sufficient for the soluble expression of fusion gene at 25$^{\circ}C$. The soluble production of Thermus thermophilus KNOUC112 $\beta$-galactosidase could be increased about 10 times by fusion with thioredoxin, and optimization of incubation temperature and IPTG concentration for induction.

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Genetically Engineered Biosynthesis of Macrolide Derivatives Including 4-Amino-4,6-Dideoxy-L-Glucose from Streptomyces venezuelae YJ003-OTBP3

  • Pageni, Binod Babu;Oh, Tae-Jin;Liou, Kwang-Kyoung;Yoon, Yeo-Joon;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • Two sugar biosynthetic cassette plasm ids were used to direct the biosynthesis of a deoxyaminosugar. The pOTBP1 plasmid containing TDP-glucose synthase (desIII), TDP-glucose-4,6-dehydratase (desIV), and glycosyltransferase (desVII/desVIII) was constructed and transformed into S. venezuelae YJ003, a strain in which the entire gene cluster of desosamine biosynthesis is deleted. The expression plasmid pOTBP3 containing 4-aminotransferase (gerB) and 3,5-epimerase (orf9) was transformed again into S. venezuelae YJ003-OTBP1 to obtain S. venezuelae YJ003-OTBP3 for the production of 4-amino-4,6-dideoxy-L-glucose derivatives. The crude extracts obtained from S. venezuelae ATCC 15439, S. venezuelae YJ003, and S. venezuelae YJ003-OTBP3 were further analyzed by TLC, bioassay, HPLC, ESI/MS, LC/MS, and MS/MS. The results of our study clearly shows that S. venezuelae YJ003-OTBP3 constructs other new hybrid macrolide derivatives including 4-amino-4,6-dideoxy-L-glycosylated YC-17 (3, [M+ $Na^+$] m/z=464.5), methymycin (4, m/z=480.5), novamethymycin (6, m/z=496.5), and pikromycin (5, m/z=536.5) from a 12-membered ring aglycon (10-deoxymethynolide, 1) and a 14-membered ring aglycon (narbonolide, 2). These results suggest a successful engineering of a deoxysugar pathway to generate novel hybrid macrolide derivatives, including deoxyaminosugar.

Large Increase in Leuconostoc citreum KM20 Dextransucrase Activity Achieved by Changing the Strain/Inducer Combination in an E. coli Expression System

  • Ko, Jin-A;Jeong, Hyung-Jae;Ryu, Young-Bae;Park, Su-Jin;Wee, Young-Jung;Kim, Do-Man;Kim, Young-Min;Lee, Woo-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.510-515
    • /
    • 2012
  • A recombinant putative dextransucrase (DexT) was produced from Leuconostoc citreum KM20 as a 160 kDa protein, but its productivity was very low (264 U/l). For optimization, we examined enzyme activity in 7 Escherichia coli strains with inducer molecules such as lactose or IPTG. E. coli BL21-CodonPlus(DE3)-RIL exhibited the highest enzyme activity with lactose. Finally, DexT activity was remarkably increased by 12-fold under the optimized culture conditions of a cell density to start induction ($OD_{600}$) of 0.95, a lactose concentration of 7.5 mM, and an induction temperature of $17^{\circ}C$. These results may effectively apply to the heterologous expression of other large DexT genes.

Comparative Study on Characterization of Recombinant B Subunit of E. coli Heat-Labile Enterotoxin (rLTB) Prepared from E. coli and P. pastoris

  • Ma, Xingyuan;Yao, Bi;Zheng, Wenyun;Li, Linfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.550-557
    • /
    • 2010
  • Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-1 fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6$\times$His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at $30^{\circ}C$, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at $37^{\circ}C$. The expression level increased dramatically to 250-300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6$\times$His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GMI gangliosides. The MW of LTB-6$\times$His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system.