Browse > Article
http://dx.doi.org/10.4014/jmb.1111.11032

Large Increase in Leuconostoc citreum KM20 Dextransucrase Activity Achieved by Changing the Strain/Inducer Combination in an E. coli Expression System  

Ko, Jin-A (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Jeong, Hyung-Jae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ryu, Young-Bae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Su-Jin (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Wee, Young-Jung (Department of Food Science and Technology, Yeungnam University)
Kim, Do-Man (School of Biological Sciences and Technology and the Research Institute for Catalysis, Chonnam National University)
Kim, Young-Min (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Woo-Song (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.4, 2012 , pp. 510-515 More about this Journal
Abstract
A recombinant putative dextransucrase (DexT) was produced from Leuconostoc citreum KM20 as a 160 kDa protein, but its productivity was very low (264 U/l). For optimization, we examined enzyme activity in 7 Escherichia coli strains with inducer molecules such as lactose or IPTG. E. coli BL21-CodonPlus(DE3)-RIL exhibited the highest enzyme activity with lactose. Finally, DexT activity was remarkably increased by 12-fold under the optimized culture conditions of a cell density to start induction ($OD_{600}$) of 0.95, a lactose concentration of 7.5 mM, and an induction temperature of $17^{\circ}C$. These results may effectively apply to the heterologous expression of other large DexT genes.
Keywords
Dextransucrase; optimization; lactose; response surface methodology; Leuconostoc citreum KM20;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Britton, H. T. S. and R. A. Robinson. 1931. Universal buffer solutions and dissociation constant of veronal. J. Chem. Soc. 1456-1462.
2 Choi, I. K., S. H. Jung, B. J. Kim, S. Y. Park, J. Kim, and H. U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84: 247-253.   DOI   ScienceOn
3 Henrissat, B. and G. Davies. 1997. Structural and sequence based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644.   DOI   ScienceOn
4 Jansson. J. C. 1987. On the history of the development of Sephadex. Chromatographia 23: 361-370.   DOI   ScienceOn
5 Ashipala, O. K. and Q. He. 2008. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresour. Technol. 99: 4112-4119.   DOI   ScienceOn
6 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
7 Kilikian, B. V., I. D. Suarez, C. W. Liria, and A. K. Gombert. 2000. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem. 35: 1019-1025.   DOI   ScienceOn
8 Kim, J. F., H. Jeong, J. S. Lee, S. H. Choi, M. Ha, C. G. Hur, et al. 2008. Complete genome sequence of Leuconostoc citreum KM20. J. Bacteriol. 190: 3093-3094.   DOI   ScienceOn
9 Kim, Y. M., M. Y. Seo, H. K. Kang, A. Kimura, and D. Kim. 2009. Construction of a fusion enzyme of dextransucrase and dextranase: Application for one-step synthesis of isomalto-oligosaccharides. Enzyme Microbial Technol. 44: 159-164.   DOI   ScienceOn
10 Malten, M., R. Hollmann, W. D. Deckwer, and D. Jahn. 2005. Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium. Biotechnol. Bioeng. 89: 206-218.   DOI   ScienceOn
11 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
12 Monchois, V., R. M. Willemot, M. Remaud-Simeon, C. Croux, and P. Monsan. 1996. Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only ${\alpha}$(1-6) and ${\alpha}$(1-3) linkages. Gene 182: 23-32.   DOI   ScienceOn
13 Neubauer, H., A. Bauche, and B. Mollet. 2003. Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures. Microbiology 149: 973-982.   DOI   ScienceOn
14 Ryu, H. J., X. G. Jin, J. H. Lee, H. J. Woo, Y. M. Kim, G. H. Kim, et al. 2010. Optimal expression and characterization of fusion enzyme having dextransucrase and dextranase activities. Enzyme Microbial. Technol. 47: 212-215.   DOI   ScienceOn
15 Yang, Y., J. Luo, J. Wang, D. Teng, and Z. Tian. 2008. Expression and characterization of dextransucrase gene dsrX from Leuconostoc mesenteroides in Escherichia coli. J. Biotechnol. 133: 505-512.   DOI   ScienceOn
16 Seo, E. S., D. Kim, J. F. Robyt, D. F. Day, D. W. Kim, H. J. Park, et al. 2004. Modified oligosaccharides as potential dental plaque control materials. Biotechnol. Prog. 20: 1550-1554.   DOI   ScienceOn
17 Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextan and acceptor-products by Leuconosotc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
18 van Hijum, S. A., S. Kralj, L. K. Ozimek, L. Dijkhuizen, and I. G. van Geel-Schutten. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70: 157-176.   DOI   ScienceOn
19 Zhang, H. B., X. Q. Mao, Y. J. Wang, and X. Q. Hu. 2009. Optimization of cultivation conditions for high-level expression of dextransucrase in Escherichia coli. J. Food Agric. Environ. 7: 75-78.