• 제목/요약/키워드: Heterojunction solar cell

검색결과 151건 처리시간 0.026초

실리콘 웨이퍼 비저항에 따른 Dopant-Free Silicon Heterojunction 태양전지 특성 연구 (The Influence of the Wafer Resistivity for Dopant-Free Silicon Heterojunction Solar Cell)

  • 김성해;이정호
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.185-190
    • /
    • 2018
  • Dopant-free silicon heterojunction solar cells using Transition Metal Oxide(TMO) such as Molybdenum Oxide($MoO_X$) and Vanadium Oxide($V_2O_X$) have been focused on to increase the work function of TMO in order to maximize the work function difference between TMO and n-Si for a high-efficiency solar cell. One another way to increase the work function difference is to control the silicon wafer resistivity. In this paper, dopant-free silicon heterojunction solar cells were fabricated using the wafer with the various resistivity and analyzed to understand the effect of n-Si work function. As a result, it is shown that the high passivation and junction quality when $V_2O_X$ deposited on the wafer with low work function compared to the high work function wafer, inducing the increase of higher collection probability, especially at long wavelength region. the solar cell efficiency of 15.28% was measured in low work function wafer, which is 34% higher value than the high work function solar cells.

Phophorus External Gettering for High Quality Wafer of Silicon Heterojunction Solar Cells

  • 박효민;탁성주;김찬석;박성은;김영도;김동환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Minority Carrier recombination should be suppressed for high efficiency solar cells. However, impurities in the silicon bulk region deteriorate the minority carrier lifetimes, causes conversion efficiency drop. In this study, we introduced phosphorus external gettering for silicon heterojunction solar cell substrates. Gettering was undergone at 750, 800, 850 and $900^{\circ}C$ in furnace for 30 minutes. Bulk lifetimes and calculated diffusion length were improved. We applied phosphorus gettering to silicon heterojunction solar cells. Gettered group and ungettered group were used as substrate of silicon heterojunction solar cells. After fabrication, characteristics of solar cells were analyzed. The results were observed to see the enhancement of substrate quality which directly connects with solar cell properties.

  • PDF

Application of Novel BSF Metal and Laser Annealing to Silicon Heterojunction Solar Cell

  • 봉성재;김선보;안시현;박형식;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.491.2-491.2
    • /
    • 2014
  • Generally, silicon heterojunction solar cell has intrinsic and n-type of hydrogenated amorphous silicon (a-Si:H) as passivation layer and BSF layer. In this study, antimony, novel material, deposited on back side of the heterojunction solar cell as passivation and BSF layer to substitute the a-Si:H and the characteristics of the solar cell such electrical properties and optical properties were analyzed. And SIMS analysis was carried out to obtain the depth profile of the BSF layer which was deposited by laser annealing process.

  • PDF

TCO Workfunction Engineering with Oxygen Reactive Sputtering Method for Silicon Heterojunction Sola Cell Application

  • 봉성재;김선보;안시현;박형식;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.492-492
    • /
    • 2014
  • On account of the good conductivity and optical properties, TCO is generally used in silicon heterojunction solar cell since the emitter material, hydrogenated amorphous silicon (a-Si:H), of the solar cell has low conductivity compare to the emitter of crystalline silicon solar cell. However, the work function mismatch between TCO layer and emitter leads to band-offset and interfere the injection of photo-generated carriers. In this study, work function engineering of TCO by oxygen reactive sputtering method was carried out to identify the trend of band-offset change. The open circuit voltage and short circuit current are noticeably changed by work function that effected from variation of oxygen ratio.

  • PDF

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

산화물구리 기반 이종접합형 태양전지의 후열처리효과 (Effect of Post-annealing Treatment on Copper Oxide based Heterojunction Solar Cells)

  • 김상모;정유섭;김경환
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.55-59
    • /
    • 2020
  • Copper Oxide (CuO) films were deposited on the n-type silicon wafer by rf magnetron sputtering for heterojunction solar cells. And then the samples were treated as a function of the annealing temperature (300-600℃) in a vacuum. Their electrical, optical and structural properties of the fabricated heterojunction solar cells were then investigated and the power conversion efficiencies (PCE) of the fabricated p-type copper oxide/n-type Si heterojunction cells were measured using solar simulator. After being treated at temperature of 500℃, the solar cells with CuO film have PCE of 0.43%, Current density of 5.37mA/㎠, Fill Factor of 39.82%.

$Si-SnO_2 $ Heterojunction의 전기적 광학적 특성 (Electrical and Optical properties of $Si-SnO_2 $ Heterojunction)

  • 김화택
    • 대한전자공학회논문지
    • /
    • 제13권2호
    • /
    • pp.23-27
    • /
    • 1976
  • p형과 n형 Si wafer의 111면위에 5x10-5mmHg의 진공내에서 SnO2-x박막을 Flash증착법으로 성장시킨 다음 산소분위기 속에서 열처리하여 Si-SnO2 heterojunction을 만들고 물성측정으로 부터 Energy bnad profile을 구하였다. 이 heterojunction은 양호한 정류성 Junction이며 400nm부터 1200nm까지 분광감도를 갖고 시정수가 -10-18sec로 고속광소자로 적합하며 Si p-n homojunction solar cell에 비하여 특성이 우수하고 제작이 간단하기 때문에 태양전지로 사용해도 손색이 없다. Si-SnO2 heterojunction was prepared by oxidzing at oxygen atmosphere SnO2-x Which made by Flith evaporation of SnO2 powder on III surface of p and n type Si single crystals. The energy band Profile of Si·SnO2 heterojunction was depicted from its physical properties. This heterojunction was very good rectifying junction, very sensitive in spectral response of Photovoltage at from 400nm to 1200nm, and -10-8sec of time contant. From above properties, this heterojunction was found ps good high speed photovoltaic device and solar cell.

  • PDF

이종접합 태양전지 (II-VI)의 제작과 물성에 대한 연구($n-Cd_{1-x}Zn_xS/p-Si$ 태양전지를 중심으로) (Fabrication and Physical Properties of Heterojunction Solar Cell (II-VI) of $n-Cd_{1-x}Zn_xS/p-Si$)

  • 이수일;김병철;서동주;최성휴;홍광준;유상하
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.41-48
    • /
    • 1988
  • Heterojunction solar cells of $n-Cd_{1-x}Zn_xS/p-Si$ were fabricated by solution growth technique. The crystal structure, spectral response, surface morphology, and I-V characteristics of the $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cells were studied. The $Cd_{1-x}Zn_xS$ layer deposited on a silicon substrate (111) were found to be a cubic structure with the crystal orientation (111), (220) of the CdS and to be a hexagonal structure with crystal orientation (100) of the ZnS. The open-circuit voltage, short-circuit current, fill factor, and conversion efficiency of $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cell under $100mW/cm^2$ illumination were found to be 0.43V, 38mA. 0.76, and 12.4%, respectively.

  • PDF

투명접합을 이용한 이종 태양전지 (Transparent conductive oxide layers-embedding heterojunction Si solar cells)

  • 윤주형;김민건;박윤창;;김준동
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An improved crystalline indium-tin-oxide (ITO) film was grown on an Al-doped ZnO (AZO) template upon hetero-epitaxial growth. This double TCO-layered Si solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides a good interface, resulting in the enhanced photovoltaic performances. It discusses TCO film arrangement scheme for efficient TCO-layered heterojunction solar cells.

  • PDF

고분자 태양전지의 결정구조와 특성의 상관성 (Correlation Between Crystal Structure and Properties in Polymer Solar Cells)

  • 김정용
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.88-93
    • /
    • 2008
  • 지역규칙성 폴리3핵실티오펜과 용해성 플러렌 블렌드로 이루어진 벌크이종접합 고분자 태양전지를 제작하였다. 고분자 블렌드 필름에 대한 열처리 효과가 필름의 결정 구조와 자외선/가시광선 흡수스펙트럼에 주는 영향을 조사하였다. 그 후, 열처리에 의한 필름의 결정구조와 태양전지 효율의 상관관계를 연구하였다. 그 결과, $150^{\circ}C$에서 열처리한 필름이 분자간 상호작용 및 결정성측면에서 최적이었으며, 이 때, 고분자 태양전지의 에너지 전환 효율은 3.2 %이었다.