• Title/Summary/Keyword: Heterogeneous bending

Search Result 11, Processing Time 0.025 seconds

The Analysis of the Residual Stress and Bending Characteristics on the Heterogeneous Materials by Laser Welding (레이저 용접에 의한 이종재료의 잔류응력과 굽힘 특성 분석)

  • 오세헌;민택기
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.45-49
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is hi-metallic system made of heterogeneous metals and these springs are bonded by laser welding. But laser welding induces a non-uniform temperature distribution, and residual stress is yielded locally by these temperature deviation. Therefore, this study measures the curvature constant to assess functions of the compensation spring of shadow mask with respect to increment temperature and estimates the effect of residual stress on the performance of tri-metal used to compensation spring.

Multiscale Simulation for a Crack Behavior in Heterogeneous Materials (비균질 재료에서의 균열거동평가를 위한 멀티스케일 수치해석)

  • Fatoni, Nurul Fajriyah;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • Functionally Graded Materials (FGM) as advanced heterogeneous composite materials have a higher performance than a conventional composite or bimaterial composite under some severe environments. As a heterogeneous material, FGM is commonly used in spacecraft, defense, nuclear and automotive industries due to its excellent properties. The purposes of this study are to evaluate the stress distribution and crack behaviors by the multiscale simulation. FGM contains two or more than two materials that the composition is structured continuously. Two types of FGM model are suggested, which are created by arbitrary prediction of the volume fraction and the exponential function. Aluminum as the metal matrix constituent and silicon carbide as the ceramic particle constituent are structured gradually by two types and the three point bending test also estimated. Moreover, two kinds of crack location were introduced in order to get the influences of material property distribution on the stress intensity factor. From the results we found that the stress intensity factors are increased in the case from softer to stiffer material, while vice versa.

Smart Roll Forming Based on Real-Time Process Data (실시간 공정데이터 기반의 스마트 롤포밍에 관한 연구)

  • Son, Jae-Hwan;Cho, Dong-Hyun;Kim, Chul-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.45-51
    • /
    • 2018
  • Roll forming refers to the production of long plate-molded products, such as panels, pipes, tubes, channels, and frames, by continuously causing the bending deformation to thin plates using rotating rolls. As the roll forming method has advantages in terms of mass production because of its excellent productivity, the size of the roll forming industry has been continuously increasing and the roll forming method is increasingly being used in diverse industrial fields as a very important processing method. Furthermore, as the roll forming method mainly depends on the continuous bending deformation of the plate materials, the time and the cost of the heterogeneous materials developed in the process are relatively large when considered from the viewpoint of plastic working because many processes are continuously implemented. The existing studies on roll forming manufacturing have reported the loss of large amounts of time and materials when the raw materials or product types were changed; further, they have stated that the use of this method can hardly guarantee the uniformity of the formed shapes and the consistency in terms of size and cannot detect all the defects occurring during the mass production and related to the dimensions. Therefore, in this research, a real-time process data-based smart roll forming method that can be applied to multiple products was studied. As a result, a roll forming system was implemented that remembers and automatically sets the changes in the finely adjusted values of the supplied quantities of individual heterogeneous materials so that the equipment setting changing time for heterogeneous material replacements or changes in the products being produced can be shortened. It also secures the uniformity of the products so that more competitive and precise slide-rail products can be mass-produced with improvements in the quality, price, and productivity of the products.

Development of Rapid Prototyping Technique using Projection Welding (Projection Welding을 이용한 쾌속 3차원 조형법의 개발)

  • 강상무;이상찬;양동렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • The purpose of this study is the development of the extensive Rapid Prototyping Technique, which can resolve the long-term manufacturing process, shrinkage and deformation occurring rapid prototyping technique. To begin with, the various specimens for tensile and bending test were manufactured on the basis of this modeling technology. Then, many kinds of the laminate pieces for the test were made by using the sheet steels 1 mm and 2 mm thickness which is composed of the same ingredient. Not only the mechanical strength of the both of the laminate specimens by the developed Rapid Prototyping using projection welding and non-laminate specimens of 5 mm thickness were evaluated, but the mechanical strength of the specimens of the tensile and bending test composed of heterogeneous components were also estimated.

  • PDF

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.

A Study on Prediction of Moment Developed in Bottom of Foundations between Pile and Heterogeneous Soils (말뚝기초와 이질지반 경계부 기초저판에서의 발생모멘트 예측에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, an analytical solution which can evaluate and reinforce the stability of foundation is introduced. To suggest a clue for the problems, current foundation reinforcing method is studied through recent literature studies and the structural analyses of foundation slab are performed on the pile foundation of 49$m^2$, 59$m^2$ and 84$m^2$ I type apartments in 15 story building. The analyses are conducted with SAP 2000, a computer program for ordinary structural analysis. To predict the moments of slab by ground non-uniformity, the structural analysis results for the foundation slab of 3 types 15 story apartment buildings in 49$m^2$, 59$m^2$ and 84$m^2$ I type on non-uniformity ground are shown in the diagrams.

Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions - (폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 -)

  • Lee, Weon-Hee;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

Correlations between the Clinical and Ultrasonographic Parameters of Congenital Muscular Torticollis without a Sternocleidomastoid Mass

  • Jisun Hwang;Eun Kyung Khil;Soo Jin Jung;Jung-Ah Choi
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1374-1382
    • /
    • 2020
  • Objective: To determine whether ultrasonography at initial presentation can help assess the clinical severity of congenital muscular torticollis (CMT) in infants without a sternocleidomastoid muscle (SCM) mass. Materials and Methods: This retrospective study included 71 infants aged less than 12 months (4.1 ± 2.3 months) with non-mass CMT. The clinical severity was divided into three grades (groups 1-3) based on the degree of lateral head bending or cervical rotation. The difference (SCM-D) and ratio (SCM-R) between the maximal thickness of the affected and non-affected SCMs were obtained using transverse and longitudinal ultrasonography. The sonographic echotexture and echogenicity of the involved SCM were reviewed. Results: A significant difference was observed in the SCM-D (0.42 ± 0.30 mm in group 1; 0.74 ± 0.50 mm in group 2; 1.14 ± 0.85 mm in group 3; p = 0.002) and SCM-R (1.069 ± 0.067 in group 1; 1.129 ± 0.087 in group 2; 1.204 ± 0.150 in group 3; p = 0.001) among the groups when measured along the longitudinal but not along the transverse ultrasonography plane. The areas under the curves of the SCM-R and SCM-D measured by longitudinal ultrasonography were 0.731 (p < 0.001) and 0.731 (p < 0.001) for group 1 versus groups 2-3. The proportions of heterogeneous echotexture or hyperechogenicity in the involved SCM did not differ significantly among the three clinical groups (all p > 0.05). Conclusion: Ultrasonography can aid in assessing the clinical severity of CMT in infants without an SCM mass at the time of initial diagnosis. The SCM-R and SCM-D helped grade the clinical severity when obtained by longitudinal scan.