• Title/Summary/Keyword: Heterogeneous Wireless Network

Search Result 285, Processing Time 0.025 seconds

Ultra Wide Area Wireless Backhaul Network System Based on Large Scale Array Antenna (대형 어레이 안테나 기반 초광역 무선 백홀망 시스템)

  • Go, SeongWon;Kim, Hyoji;Lee, Ju Yong;Cho, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1354-1362
    • /
    • 2015
  • Heterogeneous network technology is expected to be a core technology for 5G mobile communications. 5G mobile network would be composed of many base stations even have mobility, then the operator should connect base stations through the wireless backhaul technology. This paper presents Ultra Wide Area Wireless Backhaul Network System with massive array antenna. We conducted link budget analysis for Ultra Wide Area Wireless Backhaul Network and performance analysis of massive array antenna system through the transmission simulator based on beamforming technology. In wide area ($10km^2$) wireless backhaul system composed of massive antenna, we achieved 5 bps/Hz average spectral efficiency with 1 W transmission power per beam.

Transmission Rate Control in Heterogeneous Wireless Networks Using Multiple Connections (이기종 무선 네트워크에서 다중연결을 이용한 전송률 제어)

  • Jeong, Hyeon-Jin;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.993-1003
    • /
    • 2012
  • In this paper, we propose a method that wireless mobile nodes can obtain high throughput in heterogeneous wireless networks using multiple connections and it has low packet loses under handover situation. Currently, a mobile node exchanges data with server for one network connection. The proposed method can use high throughput because it doesn't only use one network(WLAN, 3G, etc.) but also use multiple wireless networks. When mobile nodes move to area to use multiple connection, mobile nodes request heterogeneous wireless networks using multiple connections message from the server and the server transmit packets using multiple connections. Also, this method doesn't disconnect previous networks, so packets losses are decreased. Using the NS-2 simulation, we verify that the propose method enhances throughput.

Design of Integrated Security Framework for Open Wireless Networking Architecture (공개 무선 통신망 구조를 위한 복합 보안 프레임워크 설계)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.288-289
    • /
    • 2013
  • An integrated security mechanism is one of the key challenges in the open wireless network architecture because of the diversity of the wireless network in open wireless network and the unique security mechanism used in each one of these networks. Optimized security protocols and mechanisms are employed for the high performance and security. Finally, a challenge in the near future will converge the integration of Open Ubiquitous Sensor Network (OUSN) with security protocols for applying the their applications. We analysed unique network-centric features and security mechanism of various heterogeneous wireless networks.

  • PDF

Performance Evaluation of Random Access in Cognitive Radios (인지 무선 통신 환경에서 임의접속 기법의 전송 효율 분석)

  • Wang, Han-Ho;Yoo, Hwa-Sun;Woo, Choong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2012
  • Random access protocol takes advantage of constructing a decentralized wireless network due to its intrinsic spectrum sensing capability. Such technical feature goes well with cognitive radio networks consisting of heterogeneous wireless systems, in which a centralized control between heterogeneous wireless systems is hard to be implemented. Motivated by the decentralized feature of the random access, we adopt the random access protocol in cognitive radio networks, and evaluate the performance of a CSMA-based cognitive radio network.

SDN-based wireless body area network routing algorithm for healthcare architecture

  • Cicioglu, Murtaza;Calhan, Ali
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.452-464
    • /
    • 2019
  • The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software-defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy-aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN-based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.

Receiver-centric Buffer Blocking-aware Multipath Data Distribution in MPTCP-based Heterogeneous Wireless Networks

  • Cao, Yuanlong;Liu, Qinghua;Zuo, Yi;Ke, Fenfen;Wang, Hao;Huang, Minghe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4642-4660
    • /
    • 2016
  • One major concern of applying Multipath TCP (MPTCP) to data delivery in heterogeneous wireless networks is that the utilization of asymmetric paths with diverse networking-related parameters may cause severe packet reordering and receive buffer blocking (RB2LOC). Although many efforts are devoting to addressing MPTCP's packet reordering problems, their sender-controlled solutions do not consider balancing overhead between an MPTCP sender and receiver, and their fully MPTCP mode cannot make MPTCP achieve a desired performance. This paper proposes a novel receiver-centric buffer blocking-aware data scheduling strategy for MPTCP (dubbed MPTCP-rec) necessitating the following aims: (1) alleviating MPTCP's packet reordering and RB2LOC problems, (2) improving the MPTCP performance, and (3) balancing load between the MPTCP sender and receiver. Simulation results show that the proposed MPTCP-rec solution outperforms the existing MPTCP solutions in terms of data delivery performance in heterogeneous wireless networks.

An Improved Zone-Based Routing Protocol for Heterogeneous Wireless Sensor Networks

  • Zhao, Liquan;Chen, Nan
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.500-517
    • /
    • 2017
  • In this paper, an improved zone-based routing protocol for heterogeneous wireless sensor networks is proposed. The proposed protocol has fixed the sized zone according to the distance from the base station and used a dynamic clustering technique for advanced nodes to select a cluster head with maximum residual energy to transmit the data. In addition, we select an optimal route with minimum energy consumption for normal nodes and conserve energy by state transition throughout data transmission. Simulation results indicated that the proposed protocol performed better than the other algorithm by reducing energy consumption and providing a longer network lifetime and better throughput of data packets.

Spectral Efficiency of Full-Duplex Wireless Backhaul with Hardware Impaired Massive MIMO for Heterogeneous Cellular Networks

  • Anokye, Prince;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-25
    • /
    • 2018
  • The paper analyzes the sum spectral efficiency (SE) for a heterogeneous cellular network (HetNet) which has the backhaul, provided with wireless full-duplex massive multiple-input multiple-out (MIMO) with hardware distortions. We derive approximate expressions to obtain the uplink/downlink sum SE of the backhaul. The analytic results have been shown to be exact when compared to Monte Carlo simulations. From the analysis, it is shown that the desired signal and the hardware distortion noise have the same order. The sum SE generally improves when the number of receive antennas increases but degrades when the hardware quality reduces. A sum SE performance ceiling is introduced by the hardware quality level.

DESIGN AND IMPLEMENTATION OF METADATA MODEL FOR SENSOR DATA STREAM

  • Lee, Yang-Koo;Jung, Young-Jin;Ryu, Keun-Ho;Kim, Kwang-Deuk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.768-771
    • /
    • 2006
  • In WSN(Wireless Sensor Network) environment, a large amount of sensors, which are small and heterogeneous, generates data stream successively in physical space. These sensors are composed of measured data and metadata. Metadata includes various features such as location, sampling time, measurement unit, and their types. Until now, wireless sensors have been managed with individual specification, not the explicit standardization of metadata, so it is difficult to collect and communicate between heterogeneous sensors. To solve this problem, OGC(Open Geospatial Consortium) has proposed a SensorML(Sensor Model Language) which can manage metadata of heterogeneous sensors with unique format. In this paper, we introduce a metadata model using SensorML specification to manage various sensors, which are distributed in a wide scope. In addition, we implement the metadata management module applied to the sensor data stream management system. We provide many functions, namely generating metadata file, registering and storing them according to definition of SensorML.

  • PDF

Spectrum allocation strategy for heterogeneous wireless service based on bidding game

  • Cao, Jing;Wu, Junsheng;Yang, Wenchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1336-1356
    • /
    • 2017
  • The spectrum scarcity crisis has resulted in a shortage of resources for many emerging wireless services, and research on dynamic spectrum management has been used to solve this problem. Game theory can allocate resources to users in an economic way through market competition. In this paper, we propose a bidding game-based spectrum allocation mechanism in cognitive radio network. In our framework, primary networks provide heterogeneous wireless service and different numbers of channels, while secondary users have diverse bandwidth demands for transmission. Considering the features of traffic and QoS demands, we design a weighted interference graph-based grouping algorithm to divide users into several groups and construct the non-interference user-set in the first step. In the second step, we propose the dynamic bidding game-based spectrum allocation strategy; we analyze both buyer's and seller's revenue and determine the best allocation strategy. We also prove that our mechanism can achieve balanced pricing schema in competition. Theoretical and simulation results show that our strategy provides a feasible solution to improve spectrum utilization, can maximize overall utility and guarantee users' individual rationality.