Browse > Article
http://dx.doi.org/10.7840/kics.2015.40.7.1354

Ultra Wide Area Wireless Backhaul Network System Based on Large Scale Array Antenna  

Go, SeongWon (Korea Advanced Institute of Science and Technology)
Kim, Hyoji (Korea Advanced Institute of Science and Technology)
Lee, Ju Yong (Korea Advanced Institute of Science and Technology)
Cho, Dong-Ho (Korea Advanced Institute of Science and Technology)
Abstract
Heterogeneous network technology is expected to be a core technology for 5G mobile communications. 5G mobile network would be composed of many base stations even have mobility, then the operator should connect base stations through the wireless backhaul technology. This paper presents Ultra Wide Area Wireless Backhaul Network System with massive array antenna. We conducted link budget analysis for Ultra Wide Area Wireless Backhaul Network and performance analysis of massive array antenna system through the transmission simulator based on beamforming technology. In wide area ($10km^2$) wireless backhaul system composed of massive antenna, we achieved 5 bps/Hz average spectral efficiency with 1 W transmission power per beam.
Keywords
5G; wireless backhaul; massive array antenna; beamforming; sidelobe control;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ministry of Science, ICT and Future Planning, Mobile Communications Long-term R&D Action Plan Report, 2014.
2 Sophocles J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 2014.
3 M.-T. Dao, V.-A. Nguyen, Y.-T. Im, and S.-O. Park, "3D polarized channel modeling and performance comparison of MIMO antenna configurations with different polarizations," IEEE Trans. Antennas and Propag., vol. 59, no. 7, pp. 2672-2682, Jul. 2011.   DOI   ScienceOn
4 3GPP, Spatial channel model for multiple input multiple output (MIMO) simulations(Sept, 2003), 2015, from http://www.3gpp.org/ftp/Specs/html-info/25996.htm.
5 Lorne C. Liechty, "Path loss measurements and model analysis of a 2.4 GHz wireless network in an outdoor environment," Georgia Institute of Technology, 2007.
6 S. Da-Shan, et al., "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Trans. Commun., vol. 48, no. 3, pp. 502-513, Mar. 2000.   DOI   ScienceOn
7 A. Abdi and M. Kaveh, "A space-time correlation model for multielement antenna systems in mobile fading channels," IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 550-560, Aug. 2002.   DOI   ScienceOn
8 J. Choi, C. An, and H.-G. Ryu, "OFDM transmission method based on the beam-space MIMO system," J. KICS, vol. 40, no. 3, pp. 425-431, Mar. 2015.   DOI
9 M.-J. Kim and Y.-C. Ko, "Channel estimation and analog beam selection for uplink multiuser hybrid beamforming system," J. KICS, vol. 40, no. 3, pp. 459-468, Mar. 2015.   DOI
10 C. A. Balanis, Antenna theory: analysis and design. vol. 1, John Wiley & Sons, 2005.
11 Domestic Mobile Communication frequencies (380 MHz-6.7 GHz) Distribution and Usage (Feb, 2014), 2015, from http://ifre.re.kr/index.php.
12 Y.-G. Lim and C.-B. Chae, "Limited Feedback Precoding for Correlated Massive MIMO Systems," J. KICS, vol. 39A, no. 7, pp. 431-436, Jul. 2014.   DOI