• Title/Summary/Keyword: Heterogeneous Distribution

Search Result 397, Processing Time 0.024 seconds

Relative Speed based Task Distribution Algorithm for Smart Device Cluster (스마트 디바이스로 구성된 클러스터를 위한 상대속도 기반 작업 분배 기법)

  • Lee, Jaehun;Kang, Sooyong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.3
    • /
    • pp.60-71
    • /
    • 2017
  • Smart devices such as smart phones, smart TVs, and smart pads have become essential devices in recent years. As the popularity and demand grows, the performance of smart devices is also getting better and users are dealing with a lot of things such as education and business using smart devices instead of desktop. However, smart devices that still have poor performance compared to desktop, even with improved performance, have difficulty running high performance applications due to limited resources. In this paper, we propose a load balancing algorithm applying the characteristics of smart devices to overcome the resource limitations of devices. in order to verify the algorithm, we implemented the algorithm after adding the distributed processing system service in Android platform. After constructing the cluster on the smart device, various experiments were conducted. Through the analysis of the test results, it is confirmed that the proposed algorithm efficiently improves the overall distributed processing performance by effectively aggregating different amounts of computing resources in heterogeneous smart devices.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

Determinants of Advanced Stage at Initial Diagnosis of Breast Cancer in Pakistan: Adverse Tumor Biology vs Delay in Diagnosis

  • Khokher, Samina;Qureshi, Muhammad Usman;Mahmood, Saqib;Sadiq, Sadia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.759-765
    • /
    • 2016
  • Background: Breast cancer is the most frequent cancer of women in Pakistan with the majority presenting with stage III or IV lesionsat initial diagnosis. Patient and health system related factors are well known determinants of delay in presentation and diagnosis. Additionally, breast cancer being a heterogeneous disease, the various molecular subtypes featuring different aggressiveness also need to be considered. The present study evaluated the association of stage at initial diagnosis of breast cancer with these two factors in local women at a tertiary level health care facility in Lahore, Pakistan. Materials and Methods: Patient and tumor features were recorded separately during diagnostic workup in Breast Clinics at INMOL and at Services Hospital, Lahore. Data were entered in MS Excel and analyzed by descriptive statistics and Chi-Square test. Results: Among the 261 patients, 64% were staged as late breast cancer (LBC), the mean age was 46.8 with standard deviation of 13 years. Some 92% had invasive ductal carcinoma (IDC), 61% had luminal types (LT) of non-aggressive tumor while 39% had the non-luminal types (NLT) of of HER2-enriched or basal aggressive tumors. While 70% of patients presented within one year of symptomatic disease (early report group "ERG"), 30% reported after a mean delay of 4 years with a standard deviation of 3.75 years. The stage distribution among ERG patients was not statistically different from those reporting late (P=0.123). Statistically larger proportion of patients with NLT presented as LBC as compared to the LT (P =0.034). Among the ERG, statistically different stage distribution of disease was observed for the NLT versus LT (P=0.047). Among those presenting late, this difference was insignificant (P=0.416). Conclusions: Breast cancer is a distinct disease in Pakistan with a high frequency of aggressive molecular types affecting younger women, with the majority presenting as LBC. Association of NLT with higher stage at diagnosis is statistically significant whereas time delay in diagnosis is not. Further research is required to define the risk profile and features in local patients. The burden of LBC can be reduced by promoting breast health awareness and by establishing easily accessible dedicated breast care set ups in the hospitals.

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Integrated Analysis of Electrical Resistivity Monitoring and Geotechnical Data for Soft Ground (연약지반에서의 전기비저항 모니터링 및 지반조사 자료의 복합 해석)

  • Ji, Yoonsoo;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.16-26
    • /
    • 2015
  • To investigate the applicability of physical prospecting technique in soft ground assessment, the resistivity monitoring data of 6 months are acquired. The Multichannel Analysis Surface Wave (MASW) has been additionally performed to identify the shear wave velocity and strength distribution of soft ground. Moreover, by using the Cone Penetration Test (CPT) and laboratory tests of drilling samples, a relationship with the physical prospect data is checked and the reliability of the physical prospect data is increased. Through these activities, the behavior patterns of soft soil are identified by long term monitoring, and the significant relationship between the shear wave velocity and laboratory tests has been confirmed, both of which can be useful in the surface wave exploration to evaluate the strength of soft ground. Finally, using the geostatistical method, 3-dimensional soil base distribution images are obtained about the combined physical prospecting data with heterogeneous data. Through the studies, the nature of entire area can be determined by long term resistivity monitoring for the soft ground assessment in wider area. It would be more economic and reliable if additional exploring and drilling samples can be analyzed, which can reinforce the assessment.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Environmental Factors and Growth Properties of Sasa borealis (Hack.) Makino Community and Effect its Distribution on the Development of Lower Vegetation in Jirisan National Park (지리산국립공원 조릿대의 입지환경 및 생장특성 분석과 하층식생에 미치는 영향)

  • Park, Seok-Gon;Yi, Myung-Hoon;Yoon, Jung-Won;Sin, Hyun-Tak
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • In this study, we investigated the environmental factors and growth characteristics of Sasa borealis community inside a temperate deciduous forest and reviewed its effect on the lower vegetation and natural regeneration. The S. borealis community in the Jungsan-ri region of Jirisan National Park was chosen as the study area, and the vegetation and the environmental factors were investigated. The dominance value, height and foliage layer thickness were investigated as the growth characteristics of S. borealis in the area. As the environmental factors, we investigated the photosynthesis photon flux density (PPFD) of the shrub and ground layers as well as the chemical characteristics of the soil. Additionally, we investigated the flora on the ground layer of the area as well as the number and height of woody plants. The result showed that the height and foliage layer thickness of the S. borealis was closely related to the light conditions but the distribution was not determined simply by the effect of the environment or vegetation of the particular area. This may be deeply related with the unique survival strategy of S. borealis, a vegetably propagated plant, that it can extensively distributed on a heterogeneous resources environment in a forest as multiple culm are interconnected with each other through the rhizomes. The dense dominance and great height of S. borealis reduced the plant species diversity in the ground layer by decreasing the PPFD on the ground surface.

Estimation of Exploitable Groundwater in the Jinju Region by Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 진주지역의 지하수 개발가능량 추정)

  • Lee, Jeong Eun;Chung, Il-Moon;Lee, Jeongwoo;Kim, Min Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.655-662
    • /
    • 2021
  • This study aimed to estimate exploitable groundwater for the sustainable supply of groundwater in the Jinju region of South Gyeongsang Province. As an integrated hydrologic analysis model, SWAT-MODFLOW was used to estimate the distributed groundwater recharge in consideration of land use and soil distribution. As a result of calibration of the model, the coefficient of determination between the observed flow and the simulated flow was 0.75-0.80, which was good. The simulated groundwater recharge rate showed a spatio-temporal distribution due to heterogeneous watershed characteristics. The amount of groundwater recharge shows lower values over winter and spring, but it increases according to the pattern of precipitation in summer and autumn. The calculated average annual groundwater recharge was compared with the result using the baseflow separation method of natural flow, and the deviation of both results was small, within 3 %, confirming the validity of the estimated groundwater recharge. Exploitable groundwater is defined as the amount of recharge corresponding to low flow with 10 years of return period. Therefore, in this study, 14.2 % of the annual precipitation was found to be exploitable as a result of calculating the amount of recharge at a 10-year frequency using a statistical frequency analysis technique.

Adsorption Characteristics of Methyl Orange on Ginkgo Shell-Based Activated Carbon (은행 껍질 기반 활성탄의 메틸오렌지 흡착 특성)

  • Lee, Jeong Moon;Lee, Eun Ji;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.636-645
    • /
    • 2022
  • In this study, we investigated the adsorption characteristics of methyl orange (MO), an anionic dye, on ginkgo shell-based activated carbon (AC). For this purpose, ACs (GS-1, GS-2, and GS-4) with different textural properties were prepared using ginkgo shells and potassium hydroxide (KOH), a representative chemical activating agent. The correlation between the textural characteristics of AC prepared and the mixing ratio of KOH was investigated using nitrogen adsorption/desorption isotherms. The MO adsorption equilibrium experiment on the prepared ACs was conducted under different pH (pH 3~11) and temperature (298~318 K) conditions, and the results were investigated by Langmuir, Freundlich, Sips and temperature-dependent Sips equations. The feasibility of the MO adsorption treatment process of the prepared AC was also investigated using the dimensionless Langmuir separation factor. The heterogeneous adsorption properties of MO for the prepared AC examined using the adsorption energy distribution function (AED) were closely related to the system temperature and textural characteristics of AC. The kinetic results of the batch adsorption performed at different temperatures can be satisfactorily explained by the homogeneous surface diffusion model (HSDM), which takes into account the external mass transfer, intraparticle diffusion, and active site adsorption. The relationship between the activation energy value obtained by the Arrhenius plot and the adsorption energy distribution function value was also investigated. In addition, the adsorption process mechanism of MO on the prepared AC was evaluated using Biot number.