• Title/Summary/Keyword: Heteroepitaxial

Search Result 67, Processing Time 0.027 seconds

THIN FILM GROWTH AND SURFACE REACTION ON H-TERMINATED SILICON SURFACE

  • Yasuda, Yukio;Zaima, Shigeaki
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.407-414
    • /
    • 1996
  • We have investigated the effects of H atoms on thin film growth processes and surface reactions. In the oxidation of Si, Si surfaces are passivated against the $O_2$ adsorption by terminating dangling bonds with H atoms. Moreover, the existence of Si-H bonds on Si(100) surfaces enhances the structural relaxation of Si-O-Si bonds due to a charge transfer from Si-Si back bonds. In the heteroepitaxial growth of a Si/Ge/Si(100) system, H atoms suppress the segregation of Ge atoms into Si overlayers since the exchange of Ge atoms with Si atoms bound with H must be accompanied with breaking of Si-H bonds. However, 3-dimensional island growth is also promoted by atomic H irradiation, which is considered to result from the suppression of surface migration of adsorbed reaction species and from the lowering of step energies by the H termination of dangling bonds.

  • PDF

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy (고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장)

  • Choi, Chi-Kyu;Kang, Min-Sung;Moon, Jong;Hyun, Dong-Geul;Kim, Kun-Ho;Lee, Jeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Epitaxial ultrathin films of $CoSi_2$ and double heteroepitaxial structure of Si/$CoSi_2$/Si(lll) were prepared on Si(111)-$7\times{7}$ substrate by in situ solid-phase epitaxy in a ultrahigh vacuum(LHV). The phase, chemical composition, crystallinity, and the microsructure of the Si/$CoSi_2$/Si(lll) interface were investigated by 2-MeV $^4He^{++}$ ion backscattering spectrometry, X-ray diffraction, and high-resolution transmission electron microscopy. The growth mode of the Co film was the Stransky-Krastanov type with texture when the substrate temperature was room temperature. A-type $CoSi_2$ ultrathin film was grown by deposition of about 50A Co on Si(ll1)-$7\times{7}$ substrate followed by in situ annealing at $700^{\circ}C$ for 10 min. The matching face relationships were $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002) with no misorientation angle. The A-type $CoSi_2$/Si(lll) interface was abrupt and coherent. The best epi-Si/epi-$CoSi_2$2(A-type)/Si(lll) structure was obtained by deposition of Si film on the CoSii at $500^{\circ}C$ followed by in situ annealing at $700^{\circ}C$ for 10 min in UHV.

  • PDF

Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System (미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구)

  • Kyoung-Ho Kim;Heesoo Lee;Yun-Ji Shin;Seong-Min Jeong;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.500-504
    • /
    • 2023
  • In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

Stress Concentration Effects on the Nucleation of the Structural Defects in Highly Strained Heteroepitaxial Layers (高變形된 異種 에피층에서 응력 집중이 결정결함 생성에 미치는 영향)

  • Kim, Sam-Dong;Lee, Jin-Koo
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.615-621
    • /
    • 2001
  • We carried out the kinetic model calculations in order to estimate the nucleation rates for two kinds of half-loop dislocations in highly strained hetero-epitaxial growths; $60^{\circ}$dislocations and twinning dislocations. The surface defects and the stress concentration effects were considered in this model, and the remaining elastic strain of the epilayers with increasing film thickness was taken into account by using the modified Matthews' relation. The calculations showed that the stress concentration effect at surface imperfections is very important for describing the defect generation in highly mismatched epitaxial growth. This work also showed that the stress concentration effect determined the type of dislocation nucleating dominantly at early growth stages in accordance with our XTEM (cross-section transmission electron microscopy) defect observation.

  • PDF

Effects of Nucleation Layer's Surface Roughness on the Quality of InP Epitaxial Layer Grown on GaAs Substrates (Nucleation Layer의 표면 거칠기가 GaAs 기판 위에 성장된 InP 에피층의 품질에 미치는 영향)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.575-579
    • /
    • 2012
  • Heteroepitaxial InP films have been grown on GaAs substrates to study the effects of the nucleation layer's surface roughness on the epitaxial layer's quality. For this, InP nucleation layers were grown at $400^{\circ}C$ with various ethyldimethylindium (EDMIn) flow rates and durations of growth, annealed at $6200^{\circ}C$ for 10 minutes and then InP epitaxial layers were grown at $550^{\circ}C$. It has been found that the nucleation layer's surface roughness is a critical factor on the epitaxial layer's quality. When a nucleation layer is grown with an EDMIn flow rate of 2.3 ${\mu}mole/min$ for 12 minutes, the surface roughness of the nucleation layer is minimum and the successively grown epitaxial layer's qualities are comparable to those of the homoepitaxial InP layers reported. The minimum full width at half maximum of InP (200) x-ray diffraction peak and that of near-band-edge peak from a 4.4 K photoluminescence are 60 arcmin and 6.33 meV, respectively.

Effects of Surface Roughness and Thermal Treatment of Buffer Layer on the Quality of GaN Epitaxial Layers (Buffer layer의 표면 거칠기와 열처리조건이 GaN 에픽층의 품질에 미치는 영향)

  • 유충현;심형관;강문성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.564-569
    • /
    • 2002
  • Heteroepitaxial GaN films were grown on sapphire substrates in order to study the effects of the buffer layer's surface roughness and thermal treatment on the epitaxial layer's quality. For this, GaN buffer layers were grown at $550^{\circ}C$ with various TMGa flow rates and durations of growth, and annealed at $1010^{\circ}C$ for 3 min after the temperature was raised by 23 ~ $92^{\circ}C/min$, and then GaN epitaxial layers were grown at $1000^{\circ}C$. It has been found that the buffer layer's surface roughness and the thermal treatment condition are critical factors on the quality of the epitaxial layer. When a buffer layer was frown with a TMGa flow rate of $24\mu mole/min$ for 30 sec, the surface roughness of the buffer lather was minimum and when the thermal ramping rate was $30.6^{\circ}C/min$ on this layer, the successively grown epitaxial layer's crystalline and optical qualities were optimized with a specular morphology. The minimum full width at half maximum(FWHM) of GaN(0002) x-ray diffraction peak and that of near-band-edge(NBE) peak from a room temperature photoluminescence (PL) were 5 arcmin and 9 nm, respectively.

Fabrication of SiCOI Structures Using SDB and Etch-back Technology for MEMS Applications (SDB와 etch-back 기술에 의한 MEMS용 SiCOI 구조 제조)

  • Jung, Su-Yong;Woo, Hyung-Soon;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.830-833
    • /
    • 2003
  • This paper describes the fabrication and characteristics of 3C-SiCOI sotctures by SDB and etch-back technology for high-temperature MEMS applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si(001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The wafer bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR. The strength of the bond was measured by tensile strengthmeter. The bonded interface was also analyzed by SEM. The properties of fabricated 3C-SiCOI structures using etch-back technology in TMAH solution were analyzed by XRD and SEM. These results indicate that the 3C-SiCOI structure will offers significant advantages in the high-temperature MEMS applications.

  • PDF

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Surface Diffusion Coefficients of Adatoms on Strained Overlayers (스트레인을 받고 있는 표면에서의 원자 확산계수)

  • Chung, K.H.;Yoon, J.K.;Kim, H.;Kahng, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.381-386
    • /
    • 2008
  • Adatom kinetics on the surfaces of Co overlayers, prepared on the W(110) surface, was studied with scanning tunneling microscopy. By counting the number-density of the adatom-islands, we estimated the ratio of adatom diffusion coefficients. The ratio $D_{W(110)}:D_{1ML\;Co}:D_{2ML\;Co}$ was measured to be 1 : 125 : 33000 at room temperature, where $D_{W(110)},\;D_{1ML\;Co}$, and $D_{2ML\;Co}$ are the diffusion coefficients on bare W(110) surface, on one-monolayer Co overlayer, and on two-monolayers Co overlayers, respectively. An increased diffusion coefficient on two-ML Co overlayers, relative to that on one-ML Co overlayers, was explained with the heteroepitaxial strain effect.