• Title/Summary/Keyword: Heterocyclic compound

Search Result 67, Processing Time 0.02 seconds

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate) (크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.648-653
    • /
    • 2014
  • Cr(VI)-heterocyclic complex (2,4'-bipyridinium chlorochromate) was synthesized by the reaction between heterocyclic compound(2,4'-bipyridine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant (${\varepsilon}$), in the order : N,N-dimet-hylformamide (DMF) > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as hydrochloric acid (HCl solution), 2,4'-bipyridinium chlorochromate oxidized benzyl alcohol (H) and its derivatives (p-$CH_3$, m-Br, m-$NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.67 (303 K). The observed experimental data have been rationalize the proton transfer occurred followed the formation of a chromate ester in the rate-determining step.

Hygrolansamycins A-D, O-Heterocyclic Macrolides from Streptomyces sp. KCB17JA11

  • Jang, Jun-Pil;Lee, Byeongsan;Heo, Kyung Taek;Oh, Tae Hoon;Lee, Hyeok-Won;Ko, Sung-Kyun;Hwang, Bang Yeon;Jang, Jae-Hyuk;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1299-1306
    • /
    • 2022
  • Six ansamycin derivatives were isolated from the culture broth of Streptomyces sp. KCB17JA11, including four new hygrolansamycins A-D (1-4) and known congeners divergolide O (5) and hygrocin C (6). Compounds 1-5 featured an unusual six-membered O-heterocyclic moiety. The isolation workflow was guided by a Molecular Networking-based dereplication strategy. The structures of 1-4 were elucidated using NMR and HRESIMS experiments, and the absolute configuration was established by the Mosher's method. Compound 2 exhibited mild cytotoxicity against five cancer cell lines with IC50 values ranging from 24.60 ± 3.37 µM to 49.93 ± 4.52 µM.

Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction (모델 콜타르 유분 중에 함유된 질소고리화합물의 추출에 관한 메탄올과 포름아마이드의 비교)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.234-238
    • /
    • 2015
  • The separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction was compared by the methanol and formamide extraction. The model coal tar fraction comprising four kinds of NHC (NHCs : quinoline, iso-quinoline, indole, quinaldine) and three kinds of bicyclic aromatic compound (BACs : 1-methylnaphthalene, 2-methylnaphthalene, dimethylnaphthalene), biphenyl and phenyl ether was used as a raw material. The aqueous solution of methanol and formamide were used as solvents. A batch-stirred tank was used as the raw material - a solvent contact unit of this work. Independent of the solvent used, the distribution coefficient of NHCs sharply increased by decreasing the initial volume ratio of water to the solvent and increasing the equilibrium operation temperature, whereas, the selectivity of NHCs in reference to BACs decreased. Decreasing the initial volume ratio of solvent to feed resulted in deteriorating distribution coefficients, but the selectivity of NHCs in reference to BAC was almost the constant. The distribution coefficient of NHCs by the methanol extraction was 3~5 times higher than that of NHCs by the formamide extraction, inversely, the selectivity of NHCs based on BACs by the formamide extraction was 3~7 times higher than that of NHCs by the methanol extraction. Furthermore, two different solvent extraction methods by adding the extraction processing speed to the balance between solvency and selectivity of NHCs were compared.

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Antimicrobial Assessment of Some Heterocyclic Compounds Utilizing Ethyl 1-Aminotetrazole-5-carboxylate (Ethyl 1-Aminotetrazole-5-carboxylate로부터 유도된 헤테로고리 화합물들의 항균 활성 시험)

  • Taha, Mamdouh A. M.;El-Badry, Susan M.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.414-418
    • /
    • 2010
  • Ethyl 1-aminotetrazole-5-carboxylate (1) reacted with hydrazine hydrate to give the corresponding aminohydrazide 2. Cyclization of 2 by carbon disulfide yielded 1,3,4-oxadiazole-5-thiol structure 3. Reaction of 3 with either chloroacetone or ethyl chloroacetate furnished S-acyl 1,3,4-oxadiazole derivatives 4 and 5, respectively. Also compound 3 reacted with hydrazine hydrate afforded 4-amino-1,2,4-triazole-5-thiol derivative 6. 6-Methyl-1,3,4-triazolo[3,4-b]-1,3,4-thiadiazole structure 7 was synthesized by reaction of aminothiol 6 with glacial acetic acid. Diazotization of 1 with sodium nitrite in presence of hydrochloric acid yielding the diazonium salt which on treating with hippuric acid, oxazolone derivative 8 was obtained. Furthermore, tetrazolo[5,1-f]-1,2,4-triazine 9 was constructed via cyclization of aminoester 1 with formamide. Compound 9 reacted with carbon disulfide to furnish 8-thione derivative 10 which reacting with chloroacetone, ethyl chloroacetate, and hydrazine hydrate, the corresponding chemical structures 11, 12, and 13 were synthesized. 1,2,4-Triazolo[4,3-d]tetrazolo[5,1-f]-1,2,4-triazines 14 and 15 were resulted by treating of compound 13 with triethyl orthoformate, and glacial acetic acid, respectively. The structures of the newly synthesized products were elucidated according to elemental analyses and spectroscopic evidences. Some of the representative members of the prepared compounds were screened for antimicrobial activity.

Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus

  • Ahsan, Mohamed Jawed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1739-1744
    • /
    • 2016
  • We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration $10{\mu}M$) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and $100{\mu}M$) and three dose related parameters $GI_{50}$, TGI and $LC_{50}$ were calculated for each (3a-g) in micro molar drug concentrations (${\mu}M$). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a $GI_{50}$ of $0.03{\mu}M$. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with $GI_{50}$ values between 0.23 and $2.67{\mu}M$.

Synthesis of Pyrimidines and Heteroannulated Pyrimidine Ring Systems (Pyrimidines과 pyrimidine의 헤테로고리의 합성)

  • Mohammed, F.K.;Badrey, M.G.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.218-229
    • /
    • 2011
  • We have involved the imine compound 1 in condensations with various nitrogenous reagents including hydrazine hydrate to construct differently substituted pyrimidines. One of the pyrimidines so obtained was further subjected to interactions with different reagents such as propionic acid, formic acid, ethyl chloroformate, acdetic anhydride, carbon disulphide, cyanogene bromide, triflauroacetic acid and ethyl chloroacetate which resulted in the formation of annulated heterocyclic systems as pairs of isomers in most cases as a result of Dimroth-type rearrangement.

Studies on Some Bioactive 1,1-Bis(2-benzylidene-5-aryliden-1,3-thiadiazolidin-4-one)cyclopropane

  • Panwar, Hemant;Chaudhary, Nidhi;Singh, Sachi;Chawla, Amit
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.994-999
    • /
    • 2011
  • Some novel heterocyclic derivatives of 1,1-bis(2-phenyl-5-arylidine-1,3-thiadiazolidin-4-one)cyclopropane 4(a-i) have been synthesized from cyclopropane dicarboxylic acid and substituted thiadiazole moieties. All the synthesized compounds have been characterized by elemental and spectral (I.R., $^1H$-NMR, Mass) analysis. Furthermore, above said compounds were screened for their antifungal and antibacterial activities. Compound 4c was found the most potent one which further evaluated for lesser toxicity test.

Silver Nanoparticles Effect on Antimicrobial and Antifungal Activity of New Heterocycles

  • Kandile, Nadia G.;Zaky, Howida T.;Mohamed, Mansoura I.;Mohamed, Hemat M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3530-3538
    • /
    • 2010
  • In this study 1-[4-(2-methoxy benzyl)-6-aryl-pyridazin-3(2H)-ylidene] hydrazines were used for the synthesis of new heterocyclic systems such as thiazolidine, phthalazine, pyrazolo, tetrazolo, hydrazide and new pyridazine derivatives to explore the effect of silver nanoparticles on their biological activity efficiency. Structures of the new heterocycles were characterized by the aid of several analytical techniques including; $^1H$-NMR, FTIR and mass spectra. Silver nanoparticles were synthesized by a simple methodology and the formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and UV studies. Most of the new prepared heterocycles were evaluated in vitro as new antimicrobial agents. Combination effects of the silver nanoparticles on the antimicrobial activity of the new heterocycles were investigated using the disk diffusion method. Compound 10a exhibited the strongest enhancing effect of silver nanoparticles solution against Aspergillus flavus and Candida albicans.

Selective Synthesis of N-(Cyclohexylmethyl)-N-alkylamines from Primary Amines and Pimelaldehyde using Tetracarbonylhydridoferrate, $HFe(CO)_4^\;-$, as a Reducing Agent

  • Sang Chul Shim;Young Gil Kwon;Chil Hoon Doh;Byung Won Woo;Jin Ook Baeg;Hong Seok Kim;Tae Jeong Kim;Dong Ho Lee;Young Woo Kwak;Jin Soon Cha;Hyung Soo Lee;Jae Kook Uhm;Young Bae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.140-143
    • /
    • 1990
  • Ethanolic tetra carbonylhydridoferrate solution combined with dialdehyde (no of carbon; 4,5,6) is very efficient for the selective transformation of amino group into N-heterocyclic compound. However, a large variety of both aliphatic and aromatic amines react with the ferrate-pimelaldehyde at room temperature under an atmospheric pressure of carbon monoxide to give the corresponding N-(cyclohexylmethyl)-N-alkyiamine derivatives in moderate yields instead of the corresponding N-substituted perhydroazocine derivatives.