• Title/Summary/Keyword: Heterocapsa

Search Result 30, Processing Time 0.027 seconds

Toxicity of Persistent Organic Pollutants, PAHs and TBT, in Zooplankton and Influence on Their Viability (동물플랑크톤에 대한 지속성 유기오염물질 PAHs와 TBT의 독성 및 생존능력에 미치는 영향)

  • Jang, Poong-Guk;Shin, Kyung-Soon;Jang, Min-Chul;Park, Dong-Won;Jang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.1-10
    • /
    • 2004
  • We conducted three experiments to estimate the toxicity of POPs (persistent organic pollutants) on two copepod species (Acartia erythraea and A. omorii) and Artemia sp.; (1) 48 h-LC$_{50}$ of A. omorii with the five PAHs [polycyelic aromatic hydrocarbons anthracene, benzo〔a〕pyrene, fluoranthene, phenanthrene, pyrene〕 which were often detected in the Gwangyang Bay, (2) toxicity of benzo〔a〕pyrene and TBT on Artemia in different temperatures (1$0^{\circ}C$, 15$^{\circ}C$, 2$0^{\circ}C$), (3) effects of benzo〔a〕pyrene and TBT on egg Production rate, hatching rate and fecal Pellet Production of two copepod species (A. erythraea and A. omorii) fed on Heterocapsa triquetra (dinoflagellate) exposed in benzo〔a〕pyrene. Toxic chemicals which were most effective to A. omorii were flueranthene (48 h-LC$_{50}$ 19.20 $\mu\textrm{g}$ L$^{-1}$ ) and benzo〔a〕pyrene (48 h-LC$_{50}$ 29.89 $\mu\textrm{g}$ L$^{-1}$ ). The toxi- city of chemicals to Artemia increased when temperature increased. The toxicity of TBT was about 100 times higher than that of benzo〔a〕pyrene at 15$^{\circ}C$. Food materials (Heterocapsa triquetra) exposed in benzo〔a〕pyrene, affected negatively the rate of egg production, hatching rate and the fecal pellet production of the copepods at the high concentration. It is suggested that an increase in the concentration of benzo〔a〕pyrene might offset the production of copepods in marine ecosystems. This study suggests that copepods may be used as n indicator for early warning of the risk of POPs in marine ecosystems.

Impacts of Temperature, Salinity and Irradiance on the Growth of Ten Harmful Algal Bloom-forming Microalgae Isolated in Korean Coastal Waters (한국연안에서 분리한 적조형성 미세조류 10종의 성장에 미치는 온도, 염분, 광도의 영향)

  • Lee, Chang-Kyu;Lee, Ok-Hee;Lee, Sam-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.79-91
    • /
    • 2005
  • In order to understand growth characteristics of ten major species of microalgae responsible for frequent harmful algal blooms in Korean coastal waters, the growth rates of the isolates were examined in relation with the impacts of water temperature, salinity and irradiance. In addition, their bloom events since 1990 as well as monthly abundance of vegetative cells were analyzed. Heterocapsa triquetra, Eutreptiella gymnastica and Alexandrium tamarense were considered as relatively mid temperature adapted species in that growth rates were comparatively high at low water temperatures of $10{\sim}16^{\circ}C$ and drastically decreased at above $22^{\circ}C$. Prorocentrum micans and Pyramimonas sp. were categorized as relatively high temperature adapted species by showing comparatively better growths at high water temperatures above $25^{\circ}C$. Akashiwo sanguinea, Heterosigma akashiwo, Prorocentrum minimum and Scrippsiella trochoidea were eurythermal species with relative high growth rates in a broad ranges of water temperature, $16{\sim}25^{\circ}C$ were slightly halophobic, showing better growths at low salinities of $10{\sim}30$ psu than at above 35 psu. H. akashiwo, P. minimum and H. triquetra were euryhaline species with remarkable growths in a broad ranges of salinity, 15-40 psu. Frequent algal blooms by these three species at extremely low salinities below 25 psu after rainfall were attributed to their euryhaline and slightly halophobic physiological characteristics. Growth rates of H. akashiwo, P. minimum and Pyraminonas sp. increased with the increase of irradiance within the experimental ranges of $2{\sim}150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$. However, A. sanguinea, A. tamarense and H. triquetra showed better growths at comparatively low irradiance of $50{\sim}100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ and drastic decreases in growth rates above $150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ of irradiance. Overall, relatively high temperature adapted species make blooms frequently in high water temperature season with strong natural irradiance, and relatively low temperature adapted species grow better at low water temperature with relatively weak natural irradiance.

The distinct characteristics of phytoplankton growth response and their community structure following seven different nutrients addition in spring season of Jinhae Bay (춘계 진해만에서 농도 구배로 첨가한 영양염에 의한 식물플랑크톤 성장반응과 군집구조의 명확한 특징)

  • Son, Moonho;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6567-6574
    • /
    • 2015
  • In order to estimate the characteristics of the growth and composition of phytoplankton according to the available nutrients, we added nitrate (0, 1, 5, 10, 20, 50, $100{\mu}M$) and phosphate (0, 0.1, 0.5, 1, 2, 5, $10{\mu}M$) to field samples in a eutrophic site (St. 1) and an oligotrophic site (St. 22) in 2010 as well as a eutrophic site (St. 1, 5), a mesotrophic site (St. 19), and an oligotrophic site (St. 22) in 2011 at Jinhae Bay, Korea. The phytoplankton growth in the areas with additional nitrates and phosphates on St. 1 were significantly different from the control (One-way ANOVA:P<0.01). The dominant species at St. 1 in 2010 were Heterocapsa triquetra and Pseudo-nitzchia spp., to which nitrate and phosphate were added, respectively. The dominant species at St. 22 in 2010 differed between treatment conditions as follows: nitrate treatment Chaetoceros spp. (${\leq}10{\mu}M$), Thalassiosira spp. ($20{\mu}M$), and Pseudo-nitzchia spp.(${\geq}50{\mu}M$) for nitrate treatment; Cylindrotheca spp. ($2{\mu}M$) and Pseudo-nitzchia spp. ($5{\mu}M$) for phosphate treatment. Phytoplankton growth in 2011 according to the added nutrient were significantly different with treatment concentrations (One-way ANOVA: P<0.01). Moreover, the beginning of exponential growth in phytoplanktons was different between the eutro-mesotrophic sites (St. 1, 5, and 19) and the oligotrophic sites (St. 22) on day 2 and day 6 respectively. This implies that phytoplankton growth in the low nutrient condition may be retarded. The dominant species at St. 1 were Eucampia spp. and Chaetoceros spp. in the low nutrient treatment compared to Skeletonema spp., and Thalassiosira spp in the high nutrient treatment. The dominant species at St. 5 and St. 19 were mostly Skeletonema spp. and Chaetoceros spp. However, the dominant species at St. 22 was Thalassiosira spp.. The results of this study showed that phytoplankton growth and composition were different in areas with different nutrient characteristics resulting from the additional nutrients. Therefore, the nutrients additional algal assay could be indirectly explained why the biomass and composition of phytoplankton in Jinhae Bay has shown spatial differences.

The difference of photosynthetic efficiency and electron transport rate by control of the red tide organism using algicidal substance and yellow clay (살조물질과 황토를 이용한 적조생물 제어에 따른광합성 효율 및 전자전달율의 차이)

  • Son, Moonho;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2951-2957
    • /
    • 2015
  • The development of worldwide harmful algal blooms(HAB) is a serious problem for public health and fisheries industries. To evaluate the algicidal impact on the HAB species, algicide thiazolidinedione derivative (TD49) and yellow clay were examined, which is focus on assess the algicidal effects and inhibition to photosynthesis of HAB species. To obtain the detailed information, we analyzed the viability of target species related to activity Chl. a, photosynthetic efficiency($F_v/F_m$), and electron transport rate(ETR). Culture experiment was conducted to evaluate the algicidal effects of three harmful species(raphidophyceae Heterosigma akashiwo, Chattonella marina, and dinophyceae Heterocapsa circularisquama) and one non-harmful species (cryptophyceae Rhodomonas salina). Our experiments revealed that three HAB species were easily destroyed of the cell walls after TD49 dosing. Also, they had significantly reducing values of active Chl. a, $F_v/F_m$, and ETR, due to the damage of photosystem II by inter-cellular disturbance. As a result, the algicidal effect(%) for the three HABs were as follows, in the order of greatest to the least: H. circularisquama> C. marina> H. akashiwo. However, the algicidal effect for yellow clay remained to be <30% (p>0.01), implying that it may not have damaged the photosystem II. On the other hand, non-HAB R. salina was promoted at both TD49 and yellow clay treatments. Our results demonstrated that the TD49 is a good agent for the control of HABs H. akashiwo, C. marina, and H. circularisquama, whereas the yellow clay would not be suitable for the field application based on our experimental results.

Selective Algicidal Effects of a Newly Developed GreenTD against Red Tide Harmful Alga (GreenTD 물질을 이용한 유해 적조 발생 종의 선택적 살조능 평가)

  • Lee, Minji;Shin, Juyong;Kim, Jin Ho;Lim, Young Kyun;Cho, Hoon;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.359-369
    • /
    • 2018
  • Harmful algal blooms (HABs) are a serious problem for public health and fisheries industries, thus there exists a need to investigate the possible ways for effective control of HABs. In the present study, we investigated the algicidal effects of a newly developed GreenTD against the HABs (Chattonella marina, Heterosigma akashiwo, Cochlodinium polykriokides, and Heterocapsa circularisquama) and non-HABs (Chaetoceros simplex, Skeletonema sp. and Tetraselmis sp.), which is focused on the different population density and concentration gradients of algicidal substances. The time series viability of target alga was assessed based on the activity of Chl. a photosynthetic efficiency in terms of $F_v/F_m$, and in vivo fluorescence (FSU). Effective control of Raphidophyta, C. marina and H. akashiwo was achieved at a GreenTD concentration of $0.5{\mu}gL^{-1}$ and $0.2{\mu}gL^{-1}$, respectively, and regrowth of both the species was not observed even after 14 days. The inhibitory ratio of the dinoflagellate, C. polykriokides was more than 80% at $0.2{\mu}gL^{-1}$ of GreenTD. H. circularisquama was constantly affected in the presence of $0.2{\mu}gL^{-1}$ of GreenTD in the high- and low-population density experimental groups. On the other hand, diatoms, C. simplex, and Skeletonema sp. were not significantly affected even in the presence of $0.2{\mu}gL^{-1}$ of GreenTD and exhibited re-growth activity with the passage of incubation time. In particular, green alga Tetraselmis sp. remained unaffected even in the presence of the highest concentration of GreenTD ($1.0{\mu}gL^{-1}$), implying that non-HABs were not greatly influenced by the algicidal substances. As a result, the algicidal activity of GreenTD on the harmful and nonharmful algae was as follows: raphidophyte>dinoflagellates>diatoms>green alga. Consequently, our results indicate that inoculation of GreenTD substances into natural blooms at a threshold concentration ($0.2{\mu}gL^{-1}$) can maximize the algicidal activity against HABs species. If we consider the dilution and diffusion rate in the field application, it is hypothesized that GreenTD will demonstrate economic efficiency, thus leading to effective control against the target HABs in the closed bay.

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.

Studies on the Environmental Characteristics of the Breeding Ground in the Kogum-sudo, Southern Part of Korean Peninsula I. Seasonal Succession of Phytoplankton Population (거금수도내 양식어장의 해양환경특성 I. 식물플랑크톤 군집의 계절변동)

  • Yoon Yang Ho;Koh Nam Pyo
    • Journal of Aquaculture
    • /
    • v.8 no.1
    • /
    • pp.47-58
    • /
    • 1995
  • Field studies on the seasonal succesion of phytoplankton population were carried out at the 25 stations of the breeding ground in Kogum-sudo, Southern coast of Korean peninsula in Feburuary, April, August and October, 1993. Sixty four species belonging to 40 genera were identified. Predominant species were mainly centric diatoms throughout the four seasons, two centric diatoms, Skeletonema costatum and Thalassiosira sp. and a pennate diatom, Thaiassionema nitzschioides in the winter; two pennate diatoms, Thaiassionema nitzschioides and Asterionella kariana, and especially a dinoflagellate, Heterocapsa triquetra (station 10) in the spring, two centric diatoms, S. costatum and Chaetoceros diadema in the summer; and a centric diatom, Rhizosolenia alata and a pennate diatom, Bacillaria paxillifer in the fall. The main red tide organisms in the breeding ground were dinoflagellates, Prorocentrum dentatum, P. minimum, P. triestinum, Ceratium furro, Gymnodinium sanguineum, Noctiluca scintillans, H. triquetra, Scrippsiella trichoidea and a diatom S. costatum in the Kogum Sudo. Seasonal phytoplankton cell numbers were in a wide range between $8.8\times10^3$ cells/l and 1.4\times10^6$ cells/l; The seasonal average cell numbers were $12.2\times10^4\pm5.9\times10^4$ cells/l $(mean\;\pm\;standard\; diviation)$ in the winter, $3.3\times10^4\pm1.4\times10^4$ cells/l in the spring, $48.4X10^4\pm40.0\pm10^4$ cells/l in the summer, and $3.6\times10^4\pm1.9\times10^4$ cells/l in the fall, respectively.

  • PDF

Isolation of Marine Bacteria Killing Red Tide Microalgae -IV. Characteristics of Algicidal Substances, Produced from Micrococcus sp. LG-5 and the Effects on Marine Organisms- (적조생물 살조세균 탐색 -IV. 살조세균 Micrococcus sp. LG-5가 생산하는 살조물질의 특성과 해양생물에 미치는 영향-)

  • JEONG Seong-Youn;PARK Young-Tae;KIM Mu-Chan;CHOI Seok-Cheol;SEONG Hee-Kyung;KIM Jai-Young;KIM Tae-Un;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • An algicidal bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides was isolated. The optimal conditions for the highest algicidal activity of bacterial culture filtrate showed in the range of $20{\~}30^{\circ}C$, at pH 7.0 and $3.0{\%}$ of NaCl concentration. In addition, $IC_(50)(mean of 50{\%} inhibitory concentration)$ of the culture filtrate against C. polykrikoides after incubation of 5 days was $0.482{\%}$. To investigate heat and pH stability of the culture filtrate of Micrococcus sp. LG-5, the culture filtrate ($pore size, 0.1 {\mu}m$) was heated to $121^{\circ}C for 15 min$ and adjusted pH from 2.0 to 10.0. There were no significant changes in algicidal activity by heat treatment and the pH change between pH from 5.0 to 10.0. The algicidal substances produced from Micrococcus sp. LG-5 were mainly detected in the fraction of $10,000{\~}1,000$ MWCO (molecular weight cut-off). The culture filtrate of Micrococous sp. LG-5 showed antimicrobial activity against Enterococcus faecalis, Escheiichia coli, Uebsiella pneunioniae and Vibrio altinolyticus, but did not show against Pseudomonas aeminosa, P. Buorescens, Salmonella typhi, Staphylococcus aureus, V. cholerae and V parahaemolyicus. The culture filtrate of Micrococcus sp. LG-5 was examined against 16 phytoplankton species and showed the algicidal activity against Ajexandzium tuarense, Eutreptiella Drnnastin, Gymnodinium catenatum, G. mikimotoi, G. sanguineum, eyodinium impuaicum, Heterocapsa triquetra, Heterosipa akashiwo, Prorocentrum micans and Pyraminonas sp.. However no algicidal effects of Micrococcus sp. LG-5 were observed against Chlamydomonas sp., Cylindrotheoa closterium, P. mininum, P. triestimum, Pseudonieschia sp. and Sczipuiella trochoidea. On the other hand, algicidal activity on the tested marinelivefood was not detected except for Isochrysis galbana. In addition, physiological responses of cultured olive flounder (Paralichthys oliraceus) exposed to $1 and 10{\%}$ of the culture filtrate of Micrococcus sp. LG-5 were measured. There were no clear changes in AST, GGT, creatinine, urea, total cholesterol, total protein, albumine, $Mg^(+2), Ca^(+2), Na^+, K^+, and Cl^-$. These results indicate that olive flounders were not affected when they were exposed to the culture filtrate of Micrococcus sp. LG-5.

  • PDF