DOI QR코드

DOI QR Code

Selective Algicidal Effects of a Newly Developed GreenTD against Red Tide Harmful Alga

GreenTD 물질을 이용한 유해 적조 발생 종의 선택적 살조능 평가

  • Lee, Minji (Ecological Risk Research Divisions, KIOST) ;
  • Shin, Juyong (Jeju Campus, Korea International School) ;
  • Kim, Jin Ho (Ecological Risk Research Divisions, KIOST) ;
  • Lim, Young Kyun (Ecological Risk Research Divisions, KIOST) ;
  • Cho, Hoon (Department of Biochemical & Polymer Engineering, Chosun University) ;
  • Baek, Seung Ho (Ecological Risk Research Divisions, KIOST)
  • 이민지 (한국해양과학기술원 위해성분석연구센터) ;
  • 신주용 (제주국제고등학교) ;
  • 김진호 (한국해양과학기술원 위해성분석연구센터) ;
  • 임영균 (한국해양과학기술원 위해성분석연구센터) ;
  • 조훈 (조선대학교 생명화학고분자공학과) ;
  • 백승호 (한국해양과학기술원 위해성분석연구센터)
  • Received : 2018.07.23
  • Accepted : 2018.08.17
  • Published : 2018.09.30

Abstract

Harmful algal blooms (HABs) are a serious problem for public health and fisheries industries, thus there exists a need to investigate the possible ways for effective control of HABs. In the present study, we investigated the algicidal effects of a newly developed GreenTD against the HABs (Chattonella marina, Heterosigma akashiwo, Cochlodinium polykriokides, and Heterocapsa circularisquama) and non-HABs (Chaetoceros simplex, Skeletonema sp. and Tetraselmis sp.), which is focused on the different population density and concentration gradients of algicidal substances. The time series viability of target alga was assessed based on the activity of Chl. a photosynthetic efficiency in terms of $F_v/F_m$, and in vivo fluorescence (FSU). Effective control of Raphidophyta, C. marina and H. akashiwo was achieved at a GreenTD concentration of $0.5{\mu}gL^{-1}$ and $0.2{\mu}gL^{-1}$, respectively, and regrowth of both the species was not observed even after 14 days. The inhibitory ratio of the dinoflagellate, C. polykriokides was more than 80% at $0.2{\mu}gL^{-1}$ of GreenTD. H. circularisquama was constantly affected in the presence of $0.2{\mu}gL^{-1}$ of GreenTD in the high- and low-population density experimental groups. On the other hand, diatoms, C. simplex, and Skeletonema sp. were not significantly affected even in the presence of $0.2{\mu}gL^{-1}$ of GreenTD and exhibited re-growth activity with the passage of incubation time. In particular, green alga Tetraselmis sp. remained unaffected even in the presence of the highest concentration of GreenTD ($1.0{\mu}gL^{-1}$), implying that non-HABs were not greatly influenced by the algicidal substances. As a result, the algicidal activity of GreenTD on the harmful and nonharmful algae was as follows: raphidophyte>dinoflagellates>diatoms>green alga. Consequently, our results indicate that inoculation of GreenTD substances into natural blooms at a threshold concentration ($0.2{\mu}gL^{-1}$) can maximize the algicidal activity against HABs species. If we consider the dilution and diffusion rate in the field application, it is hypothesized that GreenTD will demonstrate economic efficiency, thus leading to effective control against the target HABs in the closed bay.

하계 우리나라 연안내만에서 빈번하게 발생하는 유해 적조생물 제어는 수산피해를 최소화하기 위한 중요한 국가적 현안문제이다. 본 연구에서는 Thiazolidinedione 유도체 물질인 GreenTD 농도 구배별로 유해 미세조류 4종(Chattonella marina, Heterosigma akashiwo, Cochlodinium polykriokides, Heterocapsa circularisquama)과 무해 미세조류 3종 (Chaetoceros simplex, Skeletonema sp., Tetraselmis sp.)에 대해 생물 고밀도 실험군과 저밀도 실험군에서 살조물질 농도별 살조효율과 선택성을 조사하였다. 유해종에 속하는 침편모조류 C. marina와 H. akashiwo는 각각 GreenTD 0.5와 $0.2{\mu}gL^{-1}$ 농도에서 단시간에 확실한 효과를 보였으며, 14일 동안의 관찰에서도 재성장을 보이지 않았다. 적조생물 C. polykrikoides은 GreenTD $0.2{\mu}gL^{-1}$ 이상의 농도에서 광합성활성이 현저하게 떨어졌고, 살조효율 역시 80% 이상으로 나타났다. 특히, GreenTD $0.2{\mu}gL^{-1}$에서도 C. polykrikoides가 재성장하지 않은 것으로 보아, 본 물질은 C. polykrikoides에 대한 살조효과가 우수할 것으로 판단된다. H. circularisquama는 고밀도 실험군에서 GreenTD $0.5{\mu}gL^{-1}$, 저밀도 실험군에서는 GreenTD $0.2{\mu}gL^{-1}$ 농도에서부터 일정하게 영향을 받는 것으로 파악되었다. 규조류 C. simplex와 Skeletonema sp.에 대해서는 생물농도가 고밀도일 때 GreenTD $0.2{\mu}gL^{-1}$에서는 크게 영향을 받지 않았으며, 초기 일정한 영향을 받은 후 시간 경과와 더불어 재성장이 이루어졌다. 특히 녹조류 Tetraselmis sp.는 최고농도인 GreenTD $1.0{\mu}gL^{-1}$에서도 일정하게 높은 값을 유지하였다. GreenTD 농도와 생물밀도에 따른 차이가 뚜렷하게 나타났으나, 전반적으로 살조물질의 효과는 침편모조류>와편모조류>규조류>녹조류 순으로 나타났다. 결과적으로 GreenTD 물질은 유해종에는 높은 살조능력이 있고, 무해종에는 일시적으로 광합성활성에 영향을 주지만, 시간의 경과에 따라 회복되는 것을 알 수 있다. 따라서, 적조생물 C. polykrikoides 제어하기 위해서는 고밀도 실험군에서 80.8%의 살조효과를 보인 GreenTD $0.2{\mu}gL^{-1}$의 농도가 적절할 것으로 판단되며, 현장 적용시 일시적인 희석등을 고려하여 적정농도보다 높게 살포하면 일정하게 높은 살조효율을 가질 것이며, 이는 경제성을 고려하여 충분한 경쟁력이 있는 물질로 기대된다.

Keywords

References

  1. Baek SH, MC Jang, MH Son, HM Joo, H Cho and YO Kim. 2012. Algicidal effects of a newly developed thiazolidinedione derivative TD49, on dinoflagellate Akashiwo sanguinea. Ocean Polar Res. 34:1-11.
  2. Baek SH, M Son, SW Bae, K Shin, DH Na, H Cho, M Yamaguchi, YO Kim and SW Kim. 2013. Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure. J. Appl. Phycol. 25:1555-1565.
  3. Baek SH, K Shin, M Son, SW Bae, H Cho, DH Na, YO Kim and SW Kim. 2014a. Algicidal effects of yellow clay and the thiazolidinedione derivative TD49 on the fish-killing dinoflagellate Cochlodinium polykrikoides in microcosm experiments. J. Appl. Phycol. 26:2367-2378.
  4. Baek SH, M Son, SW Jung, DH Na, H Cho, M Yamaguchi, SW Kim and YO Kim. 2014b. Enhanced species-specific chemical control of harmful and non-harmful algal bloom species by the thiazolidinedione derivative TD49. J. Appl. Phycol. 26:311-321.
  5. Baek SH. 2015a. Short-term changes of microbial communities after control of Cochlodinium polykrikoides by yellow clay and chemical compound dosing in microcosm experiments. J. Korea Acad. Industr. Coop. Soc. 16:2971-2977.
  6. Baek SH, D Kim, M Son, SM Yun and YO Kim. 2015b. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. Coast. Shelf Sci. 163:265-278.
  7. Baek SH, M Son, YO Kim, H Cho, M Lee, DH Na and SW Kim. 2017. Response of Chattonella marina (Raphidophyceae) and marine plankton to yellow clay and thiazolidinedione derivative TD49 in a mesocosm enclosure. J. Appl. Phycol. 29:285-296.
  8. Costanza R, BG Norton and BD Haskell. 1992. Ecosystem health: new goals for environmental management. Island Press. Washington, D.C. pp. 236-253.
  9. Ebenezer V, WA Lim and JS Ki. 2014. Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J. Appl. Phycol. 26:2357-2365.
  10. Fukami K, T Nishijima, S Murata, S Doi and Y Hata. 1991. Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakinense red tide and their effects on algal growth. Nippon Suisan Gakkaishi. 57:2321-2326.
  11. Imai I, Y Ishida, S Sawayama and Y Hata. 1991. Isolation of a marine gliding bacterium that kills Chattonella antiqua (Raphidophyceae). Nippon Suisan Gakkaishi. 57:1409.
  12. Jeong JH, HJ Jin, CH Sohn, KH Suh and YK Hong. 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12:37-43.
  13. Kim YM, Y Wu, TU Duong, SG Jung, SW Kim, H Cho and ES Jin. 2012. Algicidal activity of thiazolidinediones derivatives against harmful algal blooming species. Mar. Biotechnol. 14:312-322.
  14. Kuster A and R Altenburger. 2007. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere 67:194-201.
  15. Lee WJ and YT Park. 1998. Isolation of marine bacteria killing red tide microalgae II. Isolation and algicidal properties of Pseudomonas sp. LG-2 possessing killing activity for dinoflagellate, Prorocentrum micans. Korean J. Fish. Aquat. Sci. 31:852-858.
  16. Lee CK, TG Park, YT Park and WA Lim. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30:3-14.
  17. Park YT, JB Park, SY Chung, BC Song, WA Lim, CH Kim and WJ Lee. 1998. Isolation of marine bacteria killing red tide microalgae I. Isolation and algicidal properties of Micrococcus sp. LG-1 possessing killing activity for harmful dinoflagellate, Cochlodinium polykrikoides. Korean J. Fish. Aquat. Sci. 31:767-773.
  18. Park TG, WA Lim, YT Park, CK Lee and HJ Jeong. 2013. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30:131-143.
  19. Sengco MR and DM Anderson. 2004. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51:169-172.
  20. Shumway SE, DM Frank, LM Ewart and JE Ward. 2003. Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates. Aquac. Res. 34:1391-1402
  21. Yoshinaga I, T Kawai, T Takeuchi and Y Ishida. 1995. Distribution and fluctuation of bacteria inhibiting the growth of a marine red tide phytoplankton Gymnodinium mikimotoi in Tanabe Bay. Fish. Sci. 61:780-786.
  22. Yoshinaga I, T Kawai and Y Ishida. 1997. Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay. Fish. Sci. 63:94-98.