• Title/Summary/Keyword: Hesperidin, Hesperetin

Search Result 30, Processing Time 0.025 seconds

Antioxidative effects of hesperidin and hesperetin under cellular system (Hesperidin과 hesperetin의 cellular system에서의 항산화 효과)

  • Cho, Eun-Ju;Li, Li;Yamabe, Noriko;Kim, Hyun-Young
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.717-722
    • /
    • 2011
  • In this study, we investigated the antioxidant activity of hesperidin and hesperetin, which are the active compounds from Citrus junos, in the cellular system. Under cellular model of oxidative damage using LLC-$PK_1$ renal epithelial cell, the oxidative damage induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) led to the loss of cell viability, while treatment of hesperidin and hesperetin increased significantly the cell viability as dose-dependent manner. In addition, NO-induced cellular oxidative damage by sodium nitroprusside were significantly recovered by the treatment of hesperidin and hesperetin, showing the increase of cell viability. But hesperidin and hesperetin showed no significant protective effect on $O_2{^-}$-induced cellular oxidative damage. The present study indicates that hesperidin and hesperetin protect against free radical, especially AAPH-induced peroxyl radical. In particular, hesperetin has stronger protective effect against oxidative stress than hesperidin.

Hesperidin and Hesperetin Protect against Oxidative Stress on Hepatic Toxicity in Rats (Hesperidin과 Hesperetin의 간 손상 동물모델에서 산화적 스트레스에 대한 간 보호 효과)

  • Kim, Ji Hyun;Li, Li;Kim, Mi Suk;Cho, Eun Ju;Kim, Hyun Young;Choi, Jine Shang
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Objectives: To investigate the protective effect of hesperidin and hesperetin against oxidative stress in 2,2'-azobis (2-aminopropane) dihydrochloride (AAPH)-induced liver toxicity in rats. Methods: Hesperidin or hesperetin (200 mg/kg/day, respectively) was orally administered for 7 days once daily in rats. Subsequently, AAPH (50 mg/kg/day) was administered intraperitoneally. Lipid peroxidation, nitric oxide production, catalase activity, and protein expressions of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in the liver tissues were measured. Results: Administration of hesperidin and hesperetin significantly decreased serum aspartate transaminase and alanine transaminase levels in AAPH-induced oxidative stress liver tissues compared with control group. Lipid peroxidation and nitric oxide (NO) production were also significantly reduced by hesperidin and hesperetin in AAPH-induced oxidative stress liver tissues. In particular, lipid peroxidation levels of hesperetin-administered group significantly decreased to 5.02 nmole/mg protein in oxidative stress rats. Hesperidin and hesperetin significantly increased antioxidant activity, such as that of catalase. Furthermore, administration of hesperidin and hesperetin substantially down-regulated the expression of NF-κB and iNOS in liver tissues. Administration of hesperidin reduced NO levels and iNOS expression more than in the hesperetin-administered group. Conclusions: Administration of hesperidin and hesperetin led to a reduction in AAPH-induced liver toxicity by regulating oxidative stress.

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

Hesperetin Stimulates Cholecystokinin Secretion in Enteroendocrine STC-1 Cells

  • Kim, Hye Young;Park, Min;Kim, Kyong;Lee, Yu Mi;Rhyu, Mee Ra
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • Hesperetin (3',5,7-trihydroxy 4'-methoxyflavanone) and its glycoside hesperidin (hesperetin 7-rhamnoglucoside) in oranges have been reported to possess pharmacological effects related to anti-obesity. However, hesperetin and hesperidin have not been studied on suppressive effects on appetite. This study examined that hesperetin and hesperidin can stimulate the release of cholecystokinin (CCK), one of appetite-regulating hormones, from the enteroendocrine STC-1 cells, and then examined the mechanisms involved in the CCK release. Hesperetin significantly and dose-dependently stimulated CCK secretion with an $EC_{50}$ of 0.050 mM and increased the intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) compared to the untreated control. The stimulatory effect by hesperetin was mediated via the entry of extracellular $Ca^{2+}$ and the activation of TRP channels including TRPA1. These results suggest that hesperetin can be a candidate biomolecule for the suppression of appetite and eventually for the therapeutics of obesity.

Antioxidant, anti-inflammatory, and antimicrobial activity of hesperetin and its cyclodextrin inclusion complexes (헤스페레틴(Hesperetin)과 사이클로덱스트린(Cyclodextrin) 포접 복합체의 항산화, 항염증, 항균 활성 )

  • Sung-Sook Choi;Kyung-Ae Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.988-1000
    • /
    • 2023
  • Hesperetin(HT) is a potent antioxidant flavonoid aglycone derived from hesperidin(HD). The antioxidant, anti-inflammatory, and antimicrobial activities of HT and its cyclodextrin(CD) inclusion complexes were compared in vitro. HT was prepared by enzymatic hydrolysis of HD, and HT/CD complexes were prepared using 𝛽-cyclodextrin(𝛽-CD) and hydroxypropyl-𝛽-cyclodextrin(HP-𝛽-CD) by solvent co-evaporation method. The solubility of the HT/HP-𝛽-CD inclusion complex increased 93.5-fold compared to HT, and the solubility of HT/𝛽-CD increased 22.5-fold. The HT/HP-𝛽-CD inclusion complex showed a similar effect as HT on radical scavenging activity in antioxidant assays, whereas the HT/𝛽-CD inclusion complex showed slightly lower activity than HT. Cytotoxicity was low in the following order; HT/HP-𝛽-CD, HT/𝛽-CD, and HT in murine macrophage RAW264.7 cells. Treatment with HT and HT/CD inclusion complexes reduced the levels of inflammatory mediators such as nitric oxide(NO), tumor necrosis factor-𝛼(TNF-𝛼) and interleukin-6(IL-6) in the cells. HT and HT/HP-𝛽-CD inclusion complex were more effective than HT/𝛽-CD inclusion complex at relatively low concentrations. Inhibitory effects were tested on skin-pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, and they showed an antimicrobial effect on S. aureus in the order of HT = HT/HP-𝛽-CD > HT/𝛽-CD, but they did not show any significant inhibitory effect on P. aeruginosa. In conclusion, HT, the aglycone form of HD, and its CD inclusion complexes showed various biological activities. HT/HP-𝛽-CD inclusion complex, which is the highly soluble form of HT, showed relatively higher activity compared to HT/𝛽-CD inclusion complex.

Analysis and Quantitative Distribution of Glycosided Flavonoids in Citruses and Korean Chung-pi (감귤류와 한국산 청피에 함유된 Glycosided Flavonoids의 분석과 정량적 분포)

  • Baik, S.O.;Bock, J.Y.;Chun, H.J.;Jeong, S.I.;Baek, S.H.;Oh, H.B.;Kim, I.K.
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.340-348
    • /
    • 2001
  • Glycosided flabonoids (naringenin, naringin, narirutin, hesperidin, and hesperetin) in Citrus and Korea Chung-pi were isolated and analyzed with HPLC, GC-mass, UV and high resolution NMR. Contents of glycosided flavonoids were compared according to kinds of Citrus and fruit ripening periods. Major compound of Korean Chung-pi was hesperidin and minors were narirutin and hesperetin. Major compounds of Gisil were naringin, narirutin, naringenin and were narirutin, hesperidin in Gigak. Major compounds of milgam and orange were narirutin, hesperidin, and the contents of glycoside flavonoids decreased according to the age of maturity.

  • PDF

Changes of Some Flavonoids in the Peel of Satsuma Mandarin (Citrus unshiu) Harvested during Maturation

  • Kim, Young-Cheon;Koh, Kyung-Soo;Koh, Jeong-Sam
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.143-146
    • /
    • 2001
  • Eight flavonoids, including rutin, naringin, hesperidin, quercetin, hesperetin, nobiletin, 3,5,6,7,8,3',4'-methoxylated flavone, and tangeretin, in the peels of satsuma mandarin (Citrus unshiu) species of Halla, Gungcheon, Hungjin, Namgam-20, Illnam-1, and Chungdo harvested between August and December were analyzed through HPLC. Hesperidin content of Halla harvested during early maturation was 28.70 mg/g, and was the highest among the tested citrus fruits. Rutin content of Hungjin harvested during early maturation was 2.66 mg/g. Naringin in all citrus species and hesperetin in Halla, Gungchun, Namgam-20, and Chungdo were only detected in the peel of fruits harvested during early maturation. Hesperidin and rutin were detected mainly in all citrus species, and other flavonoids in trace. Flavonoid content in the peel of fruits was high during early maturation. Flavonoid contents in the peels of all fruit samples were generally high in the early stage of maturation, which then decreased rapidly.

  • PDF

Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2 (마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절)

  • Lee, Seung-Hoon;Lee, Eun-Joo;Chung, Chungwook;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.129-134
    • /
    • 2019
  • In a previous study, we isolated 11 different kinds of compounds from ethyl acetate fractions of lees (jubak) which is a by-product of Korean traditional wine production. These compounds were identified as caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, and vanilic acid. To evaluate their anti-inflammatory activities in an in vitro model, nitric oxide (NO) production was measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after the treatment of these cells with each compound. Among the various chemicals, hesperetin and naringenin showed the highest inhibition of NO production in the LPS-activated RAW 264.7 cells. Hesperetin was chosen for further study because of its strong anti-inflammatory activity and because the mechanisms underlying its anti-inflammatory properties still remain unclear. Our results showed that hesperetin dramatically inhibited NO production in a dose-dependent manner as compared with in an LPS-only treated group, without affecting cell viability. In addition, hesperetin reduced the protein expression of the pro-inflammatory gene inducible nitric oxide synthase (iNOS) in a dose-dependent manner, whereas it did not affect cyclooxygenase-2 (COX-2) expression. Furthermore, hesperetin inhibited phosphorylation of p38 mitogen- activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) 1/2, whereas it did not affect phosphorylation of c-jun N- terminal kinase (JNK). The results indicated that hesperetin regulated the LPS-induced inflammatory response by suppressing p38 MAPK and ERK1/2 signaling. Overall, our results may help to understand the mechanisms underlying the anti-inflammatory activity mediated by hesperetin.

Flavonoids Components and Functional Properties of Citrus Peel Hydrolysate (감귤 과피 가수분해물의 플라보노이드 조성 및 기능적 특성)

  • Lee, Myung-Hee;Huh, Dam;Jo, Deok-Jo;Lee, Gee-Dong;Yoon, Sung-Ran
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1358-1364
    • /
    • 2007
  • Response surface methodology was employed to investigate the change of flavonoids components of citrus peel hydrolysate using Viscozyme L as the enzyme. As citrus peels were hydrolyzed by the enzyme, hesperetin and naringenin contents of flavonoids aglycone form increased. The optimal enzyme treatment conditions which were superimposed of the maximized levels for soluble solid, hesperetin, and naringenin contents were enzyme concentration of 1.5% and reaction time of 18 hr. In enzyme-untreated citrus peels (CC), soluble solid content was 48.49% and the content of hesperidin only detected flavonoids was 58.85 mg/g. In the case of optimal enzyme-treated citrus peels (CE), soluble solid content was 72.97% and the contents of naringin, hesperidin, naringenin and hesperetin were 1.56 mg/g, 31.31 mg/g, 2.58 mg/g and 3.90 mg/g, respectively. In the results of electron donating ability and angiotensin converting enzyme inhibition activity, the activity of CE was higher than that of CC.

Effects of Hesperidine, Naringin and Their Aglycones on the In Vitro Activity of Phosphatidate Phosphohydrolase, and on the Proliferation and Growth in Cultured Human Hepatocytes HepG2 Cells (In Vitro 에서 Phosphatidate Phosphohydrolase 활성과 HepG2 세포증식에 미치는 Hesperidine, Naringin 및 그 Aglycone Flavonoid의 영향)

  • Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.577-582
    • /
    • 1997
  • Effects of four citrus flavonoids, hesperidin, naringin and their aglycones on phosphatidate phosphohydrolase(PAP, EC 3.1.3.3) activity were examined using isolated rat microsomes as an enzyme source. In addition, these flavonoids were tested to see whether they exert any influence on the proliferation and growth in cultured human hepatocytes HepG2 cells. Flavonoids at concentration up to $10{-4}M$ had no significant effect on the number of cells and cell proliferation by MTT cell growth assay method, whereas aglycone flavonoids, hesperetin and narigenin, at concentration of $10{-3}M$ significantly inhibited cell proliferation. Hesperetin inhibited PAP activity in a dose-dependent manner starting at concentration of $10{-5}M$. Narigenin at concentration of $10{-2}M$ inhibited PAP activity markedly, while the other flavonoids did not show any significant effect. The present study, therefore, demonstrated that aglycone flavonoids exerted portent effects on PAP activity and on cell proliferation.

  • PDF