• 제목/요약/키워드: Hermite process

검색결과 13건 처리시간 0.02초

A revised Hermite peak factor model for non-Gaussian wind pressures on high-rise buildings and comparison of methods

  • Dongmei Huang;Hongling Xie;Qiusheng Li
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.15-29
    • /
    • 2023
  • To better estimate the non-Gaussian extreme wind pressures for high-rise buildings, a data-driven revised Hermitetype peak factor estimation model is proposed in this papar. Subsequently, a comparative study on three types of methods, such as Hermite-type models, short-time estimate Gumbel method (STE), and new translated-peak-process method (TPP) is carried out. The investigations show that the proposed Hermite-type peak factor has better accuracy and applicability than the other Hermite-type models, and its absolute accuracy is slightly inferior to the STE and new TPP methods for non-Gaussian wind pressures by comparing with the observed values. Moreover, these methods generally overestimate the Gaussian wind pressures especially the STE.

RADAU QUADRATURE FOR A RATIONAL ALMOST QUASI-HERMITE-FEJÉR-TYPE INTERPOLATION

  • Kumar, Shrawan;Mathur, Neha;Rathour, Laxmi;Mishra, Vishnu Narayan;Mathur, Pankaj
    • Korean Journal of Mathematics
    • /
    • 제30권1호
    • /
    • pp.43-51
    • /
    • 2022
  • The aim of this paper is to obtain a Radau type quadrature formula for a rational interpolation process satisfying the almost quasi Hermite Fejér interpolatory conditions on the zeros of Chebyshev Markov sine fraction on [-1, 1).

GENERALIZED FOURIER-WIENER FUNCTION SPACE TRANSFORMS

  • Chang, Seung-Jun;Chung, Hyun-Soo
    • 대한수학회지
    • /
    • 제46권2호
    • /
    • pp.327-345
    • /
    • 2009
  • In this paper, we define generalized Fourier-Hermite functionals on a function space $C_{a,b}[0,\;T]$ to obtain a complete orthonormal set in $L_2(C_{a,b}[0,\;T])$ where $C_{a,b}[0,\;T]$ is a very general function space. We then proceed to give a necessary and sufficient condition that a functional F in $L_2(C_{a,b}[0,\;T])$ has a generalized Fourier-Wiener function space transform ${\cal{F}}_{\sqrt{2},i}(F)$ also belonging to $L_2(C_{a,b}[0,\;T])$.

FCA 필릿 파이프 용접에서 다중 비선형 회귀 모형과 구간적 3차 에르미트 보간법을 통한 비드 형상 예측 (Expectation of Bead Shape using Non-linear Multiple Regression and Piecewise Cubic Hermite Interpolation in FCA Fillet Pipe Welding)

  • 조대원;나석주;이목영
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.42-48
    • /
    • 2009
  • Pipe welding is used in various ranges such as civil engineering and ship building engineering. Until now, many technicians work for pipe welding manually under harmful, dangerous and difficult conditions. So it is necessary to install automation process. For automation pipe welding, relation between welding parameters & bead shape should be considered. Using this relation, bead shape could be expected from welding parameters. FCAW was used in this study. Instead of pipe workpiece, fillet joint plate is used, which were inclined 0,45,90,135,180 degree. By analyzing between welding parameters (current, welding speed, voltage) and bead shape parameters with non-linear multiple regression, bead shape parameters could be expected. Piecewise Cubic Hermite Interpolation was used to expect smooth curved bead shape with bead shape parameters. From these processes, bead shape could be expected from welding parameters.

Efficient computational method for joint distributions of heights and periods of nonlinear ocean waves

  • Wang, Yingguang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.597-605
    • /
    • 2019
  • This paper proposes a novel method for efficient prediction of joint distributions of heights and periods of nonlinear ocean waves. The proposed novel method utilizes a transformed linear simulation which is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. This proposed novel method is utilized to predict the joint distributions of wave heights and periods of a sea state with the surface elevation data measured at the Gulfaks C platform in the North Sea, and the novel method's accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.

Asymptotic Properties of Variance Change-point in the Long-memory Process

  • 주민정;조신섭
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.23-26
    • /
    • 2000
  • It is noted that many econometric time series have long-memory properties. A long-memory process, or strongly dependent process, is characterized by hyperbolic decaying autocorrelations and unbounded spectral density at the origin. Since the long-memory property can be observed by data obtained from rather a long period, there is some possibility of parameter change in the process. In this paper, we consider the estimation of change-point when there is a change in the variance of a long-memory process. The estimator is based on some reasonable statistic and the consistency is shown using Taqqu's strong reduction theorem

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

[$GC^1$] 곡면을 이용한 선형의 표현 (Definition of Ship Hull using $GC^1$ Surface)

  • 박지선;김동준
    • 대한조선학회논문집
    • /
    • 제31권4호
    • /
    • pp.32-40
    • /
    • 1994
  • 선박설계에 있어 초기선형설계는 설계요구를 만족하는 초기선형 정의와 정의된 선형의 순정 과정을 거친다. 이 과정에서 선형의 3차원적 정의와 효과적인 순정방법이 동시에 요구된다. 본 논문에서는 곡선망 선형순정법의 결과로 얻어지는 곡선망 선형을 이용하여 곡면간 기하학적 연속($GC^1$)이 만족되는 곡면으로 선형을 정의하였다. 본 논문에서 제시된 방법은 곡선망의 생성과정에서 나타날 수 있는 불규칙한 다각형에 대해서도 곡면화가 가능한 방법이다. Hermite 혼합 Coons 면조각, Convex 조합, Gregory 면조각 보간방법을 선형곡면화에 적용시켜 선체를 3차원 곡면으로 표현했다. 생성된 곡면의 순정도에 대한 검증은 곡면간 교차를 통한 수치적인 방법을 적용하였으며, 실선에 작용한 결과를 예로서 보였다.

  • PDF

혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법 (A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet)

  • 박아론;백성준
    • 전자공학회논문지CI
    • /
    • 제49권1호
    • /
    • pp.16-22
    • /
    • 2012
  • 본 논문에서는 알츠하이머병이 유도된 형질전환 마우스로부터 획득한 혈소판 라만 스펙트럼의 분석을 위해 가우시안 모델을 이용한 커브 피팅으로 기준선을 추정하고 보정하는 방법을 제안하였다. 측정된 라만 스펙트럼은 의미 있는 정보와 불필요한 노이즈 성분인 기준선과 가산 노이즈를 포함하고 있다. 스펙트럼의 효율적인 분석을 위해 노이즈를 포함하고 있는 스펙트럼을 몇 개의 피크를 포함하는 영역으로 분할하고 각 로컬 영역의 스펙트럼을 가우시안 모델을 이용한 커브 피팅으로 모델링한다. 가산 노이즈는 원 스펙트럼을 이 델로 대체하는 과정에서 명백하게 제거된다. 피팅된 모델의 로컬 최저점을 linear, piecewise cubic Hermite, cubic spline 알고리즘으로 보간하고 기준선을 보정한다. 기준선을 보정한 피팅 모델은 PCA(principal component analysis) 방법을 이용하여 특징을 추출하고 SVM(support vector machine)과 MAP(maximum $a$ posteriori probability) 분류 방법으로 성능 비교 실험을 하였다. 실험 결과에 따르면 linear 보간법이 모든 주성분 수에 대한 분류율의 평균에서 우세하였고 특히 piecewise cubic Hermite 보간법은 주성분의 수가 5개인 경우에서 SVM 분류율이 약 97.3%로 가장 좋은 성능을 보였다. 또한 이전의 연구 결과와 비교를 통해 제안한 기준선 보정 방법이 혈소판 라만 스펙트럼의 분석에 효과적으로 적용될 수 있음을 확인하였다.

주파수 영역 해석 기법을 이용한 비정규 광대역 과정의 피로해석에 관한 연구 (A Study on Fatigue Analysis of Non-Gaussian Wide Band Process using Frequency-domain Method)

  • 김현진;장범선
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.466-473
    • /
    • 2018
  • Most frequency domain-based approaches assume that structural response should be a Gaussian random process. But a lot of non-Gaussian processes caused by multi-excitation and non-linearity in structural responses or load itself are observed in many real engineering problems. In this study, the effect of non-Normality on fatigue damages are discussed through case study. The accuracy of four frequency domain methods for non-Gaussian processes are compared in the case study. Power-law and Hermite models which are derived for non-Gaussian narrow-banded process tend to estimate fatigue damages less accurate than time domain results in small kurtosis and in case of large kurtosis they give conservative results. Weibull model seems to give conservative results in all environmental conditions considered. Among the four methods, Benascuitti-Tovo model for non-Gaussian process gives the best results in case study. This study could serve as background material for understanding the effect of non-normality on fatigue damages.