• Title/Summary/Keyword: Hermetic

Search Result 90, Processing Time 0.027 seconds

A Study on the Hermetic Method for Packaging of Implantable Medical Device (생체 이식형 의료기기의 패키징을 위한 완전 밀폐 방법에 관한 연구)

  • Park, Jae-Soon;Kim, Sung-Il;Kim, Eung-Bo;Kang, Young-Hwan;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.407-412
    • /
    • 2017
  • This paper introduces a biocompatible packaging system for implantable medical device having a hermetic sealing, such that a perfect physical and chemical isolation between electronic medical system and human body (including tissue, body fluids, etc.) is obtained. The hermetic packaging includes an electronic MEMS pressure sensor, power charging system, and bluetooth communication system to wirelessly measure variation of capacitance. The packaging was acquired by Quartz direct bonding and $CO_2$ laser welding, with a size of width $ 6cm{\times}length\;10cm{\times}lheight\;3cm$. Hermetic sealing of the packaged system was tested by changing the pressure in a hermetic chamber using a precision pressure controller, from atmospheric to 900 mmHg. We found that the packaged system retained the same count or capacitance values with sensor 1 - 25,500, sensor 2 - 26,000, and sensor 3 - 20,800, at atmospheric as well as 900 mmHg pressure for 5 hours. This result shows that the packaging method has perfect hermetic sealing in any environment of the human body pressure.

On-Chip Process and Characterization of the Hermetic MEMS Packaging Using a Closed AuSn Solder-Loop (사각고리형상의 AuSn 합금박막을 이용한 MEMS 밀봉 패키징 및 특성 시험)

  • Seo, Young-Ho;Kim, Seong-A;Cho, Young-Ho;Kim, Geun-Ho;Bu, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.435-442
    • /
    • 2004
  • This paper presents a hermetic MEMS on-chip package bonded by a closed-loop AuSn solder-line. We design three different package specimens, including a substrate heated specimen without interconnection-line (SHX), a substrate heated specimen with interconnection-line (SHI) and a locally heated specimen with interconnection-line (LHI). Pressurized helium leak test has been carried out for hermetic seal evaluation in addition to the critical pressure test for bonding strength measurement. Substrate heating method (SHX, SHI) requires the bonding time of 40min. at 400min, while local heating method (LHI) requires 4 min. at the heating power of 6.76W. In the hermetic seal test. SHX, SHI and LHI show the leak rates of 5.4$\pm$6.7${\times}$$^{-10}$ mbar-l/s, 13.5$\pm$9.8${\times}$$^{-10}$ mbar-l/s and 18.5$\pm$9.9${\times}$$^{-10}$ mbar-l/s, respectively, for an identical package chamber volume of 6.89$\pm$0.2${\times}$$^{-10}$. In the critical pressure test, no fracture is found in the bonded specimens up to the applied pressure of 1$\pm$0.1MPa, resulting in the minimum bonding strength of 3.53$\pm$0.07MPa. We find that the present on-chip packaging using a closed AuSn solder-line shows strong potential for hermetic MEMS packaging with interconnection-line due to the hermetic seal performance and the shorter bonding time for mass production.

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

Negative PR의 기밀 특성

  • Choe Ui-Jeong;Seon Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.115-120
    • /
    • 2006
  • MEMS 소자의 접합과 패키징에 Pb free solder를 사용하게 됨에 따라 발생하는 문제들로 인하여 보다 쉽고 간편하게 hermetic이 유지될 수 있는 방법을 검토하게 되었다. 따라서 본 연구는 epoxy 계통의 negative PR인 XP SU-8 3050 NO-2를 접착제로 사용 시 Si시편/ 유리기판, Si시편/LTCC기판에서 hermetic 특성의 고찰이 목적이다. Si시편/유리기판과 Si시편/LTCC기판의 접합 계면에 접착제로 negative PR을 토출하고 활성화 공정조건을 행한 시편들에서 hermetic이 얻어졌다. Si시편/유리기판의 leak rate는 $5.9{\times}10^{-8}mbar-1/sec$로 접합방법에 따른 영향은 없었으며, Si시편/LTCC 기판에서 leak rate는 $4.9{\times}10^{-8}mbar-1/sec$로 Si시편/유리기판과 비슷하였다. 향후 He leak rate를 개선하기 위해서는 LTCC 기판을 가공하여 PR 흐름방지 턱을 만들고, UV expose 에너지를 높이고 ($400mj/cm^2$ 조사), 시린지/기판의 gap 조절을 자동화 할 수 있는 vision system이 부착된 장비를 사용하면, 보다 낮은 leak rate 값을 얻을 수 있어 우수한 hermetic이 유지된다.

  • PDF

Hermetic Characteristics of Negative PR (Negative PR의 기밀 특성)

  • Choi, Eui-Jung;Sun, Yong-Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.33-36
    • /
    • 2006
  • Many issues arose to use the Pb-free solder as adhesive materials in MEMS ICs and packaging. Then this study for easy and simple sealing method using adhesive materials was carried out to maintain hermetic characteristic in MEMS Package. In this study, Hermetic characteristic using negative PR (XP SU-8 3050 NO-2) as adhesive at the interface of Si test coupon/glass substrate and Si test coupon/LTCC substrate was examined. For experiment, the dispenser pressure was 4 MPa and the $200\;{\mu}m{\Phi}$ syringe nozzle was used. 3.0 mm/sec as speed of dispensing and 0.13 mm as the gap between Si test coupon and nozzle was selected to machine condition. 1 min at $65^{\circ}C$ and 15 min at $95^{\circ}C$ as Soft bake, $200\;mj/cm^2$ expose in 365 nm wavelength as UV expose, 1 min at $65^{\circ}C$ and 6 min at $95^{\circ}C$ as Post expose bake, 60 min at $150^{\circ}C$ as hard bake were selected to activation condition of negative PR. Hermetic sealing was achieved at the Si test coupon/ glass substrate and Si test coupon/LTCC substrate. The leak rate of Si test coupon/glass substrate was $5.9{\times}10^{-8}mbar-l/sec$, and there was no effect by adhesive method. The leak rate of Si test coupon/LTCC substrate was $4.9{\times}10^{-8}mbar-l/sec$, and there was no effect by dispensing cycle. Better leak rate value could be achieved to use modified substrate which prevent PR flow, to increase UV expose energy and to use system that controls gap automatically with vision.

  • PDF

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF

IC Package 기술개발 동향

  • O, Haeng-Seok;Jeong, Cheol-O;Jo, Jin-Ho;Sin, Seong-Mun
    • Electronics and Telecommunications Trends
    • /
    • v.4 no.4
    • /
    • pp.17-33
    • /
    • 1989
  • Hermetic 패키지는 재질 특성상 Plastic 패키지보다 환경내구성이 우수하고 수명이 긴 장점이 있으나, 가격이 높고 사용자의 주문에 의한 수작업으로 수급이 어려운 단점이 있다. 한편 Plastic 패키지는 가격이 낮고 수급이 용이한 반면 환경 특히 습기로 인한 고장으로 Hermetic 패키지보다 신뢰도가 낮아서 고신뢰도를 요구하는 군사용 및 산업용기기에서의 사용은 기피되어 왔다. 그러나 최근 Plastic 패키지의 단점을 개선하려는 노력으로 반도체칩의 수율 향상과 더불어 습기에 강한 재료가 개발되고 웨이퍼 제조기술이 발전됨에 따라 Plastic 패키지의 신뢰도가 향상되어 통신기기등 산업용 기기에까지 사용영역을 확대해 가고 있다. 또한 국내의 통신시장 개방에 따라 통신시스팀의 성능개선 및 신뢰성 제고를 통한 대외 경쟁력이 요구되어 통신시스팀에 Plastic 패키지 사용에 대한 인식이 증대하는 추세이다. 본고에서는 IC 패키지(Hermetic, Plastic)의 특성 및 성능을 비교 분석하고 이와 병행하여 Plastic 패키지의 최근 기술동향을 파악함으로써 통신시스팀에 사용하는 IC 패키지에 대한 고려사항을 제시하였다.

Optimum Design of Hermetic Compressor Joumal Bearing with Alternative Refrigerant Application (대체냉매 적용에 따른 밀폐형 압축기 저널베어링의 최적설계)

  • 이규한;김정우;이장희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.218-227
    • /
    • 1998
  • Present study is undertaken to optimize the lubrication reliability and frictional loss of the dynamically-loaded journal bearing in hermetic reciprocating compressor with alternative refrigerant R600a application. Thermodynamic and dynamic analysis has been conducted to investigate cylinder pressure variations by substitution alternative refrigerant R600a for R12. The modeling of the dynamics of the compressor mechanism has been performed with lumped mass method. A mathematical model is developed for analyzing the dynamics of the journal bearing system with the mobility method. It takes into account the effects of the refrigerant species, aspect ratio, clearance ratio and surface roughness. A corresponding computer program is described which enables to obtain the minimum film thickness and frictional loss. Design optimization is graphically performed by parametric studies of the aspect ratio and clearance ratio.

  • PDF

Low Temperature Hermetic Packaging by Localized Heating using Micro Heater (미세 가열기를 이용한 부분 가열 저온 Hermetic 패키징)

  • 심영대
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.15-19
    • /
    • 2002
  • 기존 형상의 미세 가열기를 이용한 마이크로 시스템 패키징의 문제점을 해결하기 위해 새로운 형상의 미세 가열기를 제작하여 패키징 실험을 실시하였다. 기존 형상의 미세 가열기와 새로운 미세 가열기의 형상을 각각 제작하여 접합시에 미세 가열기에 발생하는 열분포를 IR 카메라를 이용하여 실험하였다. 기존 형상의 미세 가열기가 불균일하게 가열되는 반면, 새로운 형상의 미세 가열기는 매우 균일하게 가열되는 형상을 나타내었다. IR 카메라 실험을 바탕으로 접합 실험을 실시하였다. 접합 실험시 사용한 미세 가열기는 폭 50$\mu\textrm{m}$, 두께 2$\mu\textrm{m}$로 제작하였으며, 0.2 Mpa의 압력을 Pyrex glass cap에 가한 상태에서 150 mA의 전류를 공급함으로서 접합을 완료하였다. 접합이 완료된 시편들에 대해서 IPA를 통한 leakage 실험을 실시하였으며, 기존 형상의 미세 가열기를 이용한 시편들은 66%가 테스트를 통과한 반면 새로운 형상의 미세 가열기를 이용한 시편들은 85% 이상이 테스트를 통과하였다. Leakage 실험을 통과한 각각의 시편들에 대해서 접합력 측정을 실시한 결과, 기존 형상의 미세 가열기를 이용한 시편들은 15~21 Mpa의 접합력을 나타내었고, 새로운 형상의 미세 가열기를 이용한 시편들은 25~30 Mpa의 우수한 접합력을 나타내었다.

  • PDF

Study on Pressure Pulsation and Cavity Resonance in Discharge Plenum of Hermetic Compressor (공조용 밀폐형 압축기의 토출부 압력맥동 및 케비티 공명에 대한 연구)

  • 이진갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.302-308
    • /
    • 2000
  • The major source of noise in air-conditioner is a compressor. Therefore, noise reduction in a compressor is quite significant as an element technology in air-conditioner field. Recently, a scroll compressor is widely used, because a scroll compressor features lower noise, due to less pulsation of gas pressure, than that of the rotary compressor. During a past noise reduction effort on a scroll compressor, noise radiation from the discharge portion of the hermetic shell was identified as the major contributor to overall noise. For a reduction of noise, the source of noise at the discharge portion must be identified. This paper presents detailed analyzes for the discharge pressure pulsation and cavity resonance at discharge space, which will make possible a low noise design of a scroll compressor.

  • PDF