• Title/Summary/Keyword: Herbicide response

Search Result 112, Processing Time 0.027 seconds

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF

An Improved Method to Determine Corn (Zea mays L.) Plant Response to Glyphosate (Glyphosate에 대한 옥수수 반응의 개선된 검정방법)

  • Kim, Jin-Seog;Lee, Byung-Hoi;Kim, So-Hee;Min, Suk-Ki;Choi, Jung-Sup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Several methods for determining the response of corn to glyphosate were investigated to provide a fast and reliable method for identifying glyphosate-resistant corn in vivo. Two bioassays were developed. One assay is named 'whole plant / leaf growth assay', in which the herbicide glyphosate is applied on the upper part of 3rd leaf and the growth of herbicide-untreated 4th leaf is measured at 3 day after treatment. in this assay, the leaf growth of conventional corn was inhibited in a dose dependent from 50 to $1600{\mu}g/mL$ of glyphosate and growth inhibition at $1600{\mu}g/mL$ was 55% of untreated control. The assay has the potential to be used especially in the case that the primary cause of glyphosate resistance is related with a reduction of the herbicide translocation. Another assay is named 'leaf segment / shikimate accumulation assay', in which the four excised leaf segments ($4{\times}4mm$) are placed in each well of a 48-well microtiter plate containing $200{\mu}L$ test solution and the amount of shikimate is determined after incubation for 24 h in continuous light at $25^{\circ}C$. In this assay, 0.33% sucrose added to basic test solution enhanced a shikimate accumulation by 3 to 4 times and the shikimate accumulation was linearly occurred from 2 to $8{\mu}g/mL$ of glyphosate, showing an improved response to the method described by Shaner et al. (2005). The leaf segment / shikimate accumulation assay is simple and robust and has the potential to be used as a high throughput assay in the case that the primary cause of glyphosate resistance is related with EPSPS, target site of the herbicide. Taken together, these two assays would be highly useful to initially select the lines obtained after transformation, to investigate the migration of glyphosate-resistant gene into other weeds and to detect a weedy glyphosate-resistant corn in field.

Tissue Culture Method as a Possible Tool to Study Herbicidal Behaviour and Herbicide Tolerance Screening (조직배양(組織培養) 방법(方法)을 이용(利用)한 제초제(除草劑) 작용성(作用性) 및 제초제(除草劑) 저항성(抵抗性) 검정방법(檢定方法) 연구(硏究))

  • Kim, S.C.;Lee, S.K.;Chung, G.S.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.174-190
    • /
    • 1986
  • A series of laboratory and greenhouse experiments were conducted to find out the possibility of tissue culture and cell culture methods as a tool to study herbicidal behaviour and herbicide tolerance screening from 1985 to 1986 at the Yeongnam Crop Experiment Station. For dehulled-rice culture, pure agar medium was the most appropriate in rice growth campared to other media used for plant tissue culture method. All the media but the pure agar medium resulted in growth retardance by approximately 50% and this effect was more pronounced to root growth than shoot growth. Herbicidal phytotoxicity was enhanced under light condition for butachlor, 2.4-D, and propanil while this effect was reversed for DPX F-5384 and CGA 142464, respectively. And also, herbicides of butachlor, chlornitrofen, oxadiazon, and BAS-514 resulted in more phytotoxic effect when shoot and root of rice were exposed to herbicide than root exposure only while other used herbicides exhibited no significant difference between two exposure regimes. Similar response was obtained from Echinochloa crusgalli even though the degree of growth retardance was much greater. Particularly, butachlor, 2.4-D, chlornitrofen, oxadiaxon, pyrazolate and BAS-514 totally inhibited chlorophyll biosynthesis even at the single contact of root. Apparent cultivar differences to herbicide were observed at the young seedling culture method and dehulled rice cultivars were more tolerant in DPX F-5384, NC-311, pyrazolate and pyrazoxyfen, respectively. For derant than other types or rice cultivar in butachlor, pretilachlor, perfluidone and oxadiazon while Tongil-type rice cultivars were more tolerant in DPXF-5384, NC-311, Pyrazolate and Pyrazoxyfen, respectively. For dehulled rice culture, on the other hand, Japonica-type rice cultivar was less tolerant to herbicides of butachlor, propanil, chlornitrofen and oxadiazon that was reversed trend to young seedling culture test. Cultivar differences were also exhibited within same cultivar type. In general, relatively higher tolerant cultivars were Milyang 42, Cheongcheongbyeo, Samgangbyeo, Chilseoungbyeo for Tongil-type, Somjinbyeo for Japonica-type and IR50 for Indica-type, respectively. The response of callus growth showed similar to dehulled rice culture method in all herbicides regardless of property variables. However, concentration response was much sensitive in callus response. The concentration ranges of $10^{-9}M-10^(-8)M$ were appropriate to distinguish the difference between herbicides for E. crusgalli callus growth. Among used herbicides, BAS-514 was the most effective to E. crusgalli callus growth. Based on the above results, tissue culture method could be successfully used as a tool for studying herbicidal behaviour and tolerance screening to herbicide.

  • PDF

Differential herbicide response of sulfonylurea-resistant Monochoria vagnalis accessions to sulfonylurea herbicides (서로 다른 지역에서 채집된 Sulfonylurea계 제초제 저항성 물달개비의 제초제 반응 차이)

  • Park, Tae-Seon;Lee, In-Yong;Park, Jae-Eup;Oh, Se-Mun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.269-275
    • /
    • 2007
  • Four sulfonylurea(SU)-resistant Monochoria vaginalis(M. vaginalis) accessions were tested for levels of resistance to four SU herbicides which have been widely using in paddy fields of Korea, based on whole plant response and sensitivity of the target enzyme, acetolactate synthase(ALS). The resistant Naju, Nonsan and Gimje accessions were not affected to the survival by treatment with recommended dose of all SU herbicides tested. The $GR_{50}$ values for the Naju, Nonsan and Gimje accessions were 8- to 33-fold, 8- to 30-fold and 7- to 32-fold higher to recommended doses of all SU herbicides tested than the susceptible Cheongdo accession, respectively. However, the $GR_{50}$ values for Kimhae accession displayed an intermediate response and was only 4-to 13-fold more resistant than the susceptible accession. The ALS $I_{50}$ values for the Naju, Nonsan and Gimje accessions were 25- to 66-fold, 9- to 26-fold and 10- to 24-fold higher to recommended doses of all SU herbicides tested than the susceptible Cheongdo accession, respectively. However, the $I_{50}$ value for Kimhae accession was 4- to 9-fold more resistant than the susceptible accession, as determined by $I_{50}$ values of ALS.

New Esterification Method for the Simulataneous Analysis of 2,4-D, Dicamba and Mecoprop in Soil Leachates by GC/MS and GC/ ECD (새로운 유도체 합성법에 의한 토양침투수중 2,4-D, dicamba 및 mecoprop의 동시 분석법에 관한 연구)

  • Hong, Moo-Ki;Lee, Hee-Duck;Park, Kun-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • esters of the acid analytes were synthesized using $H_2SO_4$ as the catalyst. Efficiency of derivatization and instrumental molecular-response were compared with herbicides methylated with $BF_3-methanol$(14% W/V), $H_2SO_4-methanol$(33% V/V), and diazomethane. The molecular integrity of TFE-2,4-D, TFE-dicamba, and TFE-mecoprop, in the mixture, was confirmed by the GC/MSD method. The TFE-Esterification efficiency was maximized by adjusting the volume of $H_2SO_4$ the reaction time, and temperature. Optimal efficiency for the herbicide mixture was obtained by adding 1 ml of $H_2SO_4$ and 1 ml of TFE to the dried sample and allowing the reaction to proceed at $22^{\circ}C$ for 8 hr or using 0.5 ml $H_2SO_4$ and 1 ml of TFE at $60^{\circ}C$. For 120 min increasing the temperature and decreasing the reaction time were required for maximum esterification efficiency. The sensitivity of the GC/ECD to the TFE esters was about $2{\sim}20$ times greater than that to the methyl ester derivatives. The herbicides were extracted and esterified to TFE derivatives simultaneously from soil leachates previously spiked with the analytes. Herbicide recovery, peak resolution, and detector sensitivity were excellent without using column cleanup procedures.

  • PDF

Specifics in Weed Competition and Herbicide Response of Chinese Cabbage(Brassica pekinensis) under Foggy Condition (안개에 기인하는 배추(Brassica pekinensis)의 잡초경합(雜草競合) 및 제초제반응(除草劑反應) 특이성(特異性))

  • Guh, J.O.;Park, T.D.;Chon, S.U.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.270-277
    • /
    • 1995
  • The research was carried out in tray in greenhouse equipped with Auto Foggy Systems(SAE KI RIN Co.) and the results were summarized as follows. 1. The number of leaves and fresh weight of Chinese cabbage were not different, but the plant height was increased due to foggy condition. 2. Plant height was decreased in 40 and 60 days of weed competition by foggy condition, the number of leaves was not different. And, shoot fresh weight was decreased by in all the duration of weed competition under foggy condition. Especially, that was greater in 40 days. 3. The shoot fresh weight was decreased by pendimethaline and napropamide application under foggy condition. Also, the number of leaves was decreased at 60 days after transplanting by pendimethaline application under foggy condition. 4. Pendimethalin, napropamide and alachlor treatments were not different in the weeding efficacy between non-foggy and foggy conditions. Trifluraline showed lower weeding efficacy by seedling emergence of large crabgrass as the days of treatment got longer under foggy condition.

  • PDF

Risk assessment and evaluation of epidermal growth factor (EGF) transgenic soybean: responses of Cyprinus carpio fed on EGF transgenic soybean

  • Oh, Sung-Dug;Min, Seok-Ki;Kim, Jae Kwang;Park, Jung-Ho;Kim, Chang-Gi;Park, Soo Yun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.815-827
    • /
    • 2020
  • The epidermal growth factor (EGF) transgenic soybean was developed and biosynthesis of human epidermal growth factor (hEGF) in soybean seeds was confirmed. Also, EGF transgenic soybean were found to contain a herbicide resistance selectable marker by introduction of phosphinothricin acetyltransferase (PAT) gene from the Streptomyces hygroscopicus. For biosafety assessment, the EGF transgenic soybean expressing the EGF biosynthesis gene EGF and herbicide resistant gene PAT was tested to determine effects on survival of Cyprinus carpio, commonly used as a model organism in ecotoxicological studies. C. carpio was fed 100% ground soybean suspension, EGF soybean or non-genetically modified (GM) counterpart soybean (Gwangan). Gene expression of EGF soybean was confirmed by PCR and ELISA to have EGF/PAT. Feeding test showed that no significant differences in cumulative immobility or abnormal response between C. carpio samples fed on EGF soybean and non-GM counterpart soybean. The 48 h-EC50 values of the EGF and non-GM soybean were 1,688 mg·L-1 (95% confidence limits: 1,585 - 1,798 mg·L-1) and 1,575 mg·L-1 (95% confidence limits: 1,433 - 1,731 mg·L-1), respectively. The soybean NOEC (no observed effect concentration) value for C. carpio was suggested to be 625 mg·L-1. We concluded that there was no significant difference in toxicity for non-target organisms (C. carpio) between the EGF soybean and non-GM counterparts.

Response of Rice Varieties to Various Herbicides -(I) Effect of Varying Water Depth and Temperature on Herbicidal Action- (제초제에 대한 수도품종간반응 -(I) 수심 및 온도처리가 제초제의 작용에 미치는 영향-)

  • K. U. Kiml;Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.20
    • /
    • pp.148-151
    • /
    • 1975
  • Response of rice varieties Tongil, Jinheung and IR 24 to four preemergence herbicides was determined. Saturn-s [s-(4-chlorobenzyl)-N, N-diethylthiol carbamate plus 2-methylthiol-4, 6-bisethylamino-2-triazine] caused severe injury to Tongil at the high temperature and less at the higher water level, but slight injury to Jinheung and IR 24. The difference may be explained by the shallower root system of Tongil, allowing more contact with the herbicide, or different varietal metabolic rates.

  • PDF

Response of Korean ginseng (Panax ginseng C. A. Meyer) to 2, 4-D I . Effects of 2, 4-D concentrations on Growth and Root Yield (제초제 2, 4-D에 대한 고려인삼의 반응 I. 2, 4-D의 농도가 인삼의 생육 및 근수량이 미치는 영향)

  • 조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.422-427
    • /
    • 1989
  • Weeds may compete detrimentally with the ginseng for moisture and nutrients but hand weeding is the only practical means of eliminating weeds after crop establishment. To define the effects of 2, 4-D herbicide application on the plant growth and root yield of Korean ginseng (Panax ginseng C. A. Meyer). the herbicide 2, 4-D was applied as a foliar spray with the rates of 0.5. 1.0. 1.5 and 2.0 times of the recommended herbicide dosage 70ml/l0a. The Korean ginseng treated with 2, 4-D in the rate of two times concentration was indistinguishable from nontreated plants in visual rating for foliar symptoms. There were no significant differences of the leaf length and width as well as the stem length and diameter in check plants and those recieving 2, 4-D treatments. The. berry maturing in 3 and 4-years old ginseng was not inhibited with 2, 4-D treatment. The root weight of the 4-years old ginseng plant was not reduced by 2, 4-D application of 2 times dosage. However. when the ginseng seedling was treated with 2, 4-D. detrimental phenomena as stem bending and dicoloration of marginal part of seedling leaf were occured but stem bending was recovered in a few days.

  • PDF