• Title/Summary/Keyword: Hepatoprotective Activity

Search Result 326, Processing Time 0.026 seconds

Anti-obese related pharmacological effects of standard potato protein extracts on the 45%Kcal high fat diet supplied mice

  • Kang, Su-Jin;Song, Chang-Hyun;Kim, Jong-Kyu;Chun, Yoon-Seok;Han, Chang-Hyun;Lee, Young-Joon;Ku, Sae-Kwang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.77-107
    • /
    • 2018
  • Objectives : In present study, therefore, possible beneficial pharmacological activities of standard potato protein extracts (SPE) were observed on the mild diabetic obese mice. Methods : After end of 12 weeks of continuous oral administrations of three different dosages of SPE 400, 200 and 100 mg/kg, or metformin 250 mg/kg, analyzed the hepatoprotective, hypolipidemic, hypoglycemic, nephroprotective and anti-obesity effects, separately. In addition, liver antioxidant defense systems were additionally measured with lipid metabolism-related genes expressions and hepatic glucose-regulating enzyme activities for action mechanism. Results : All of diabetes and related complications including obesity were significantly inhibited by treatment of SPE 400, 200 and 100 mg/kg, dose-dependently, and they also dramatically normalized the hepatic lipid peroxidation and depletion of liver endogenous antioxidant defense system, the changes of the hepatic glucose-regulating enzyme activities, also changes of the lipid metabolism-related genes expressions including hepatic $AMPK{\alpha}1$ and $AMPK{\alpha}2$ mRNA expressions, dose-dependently. Especially, SPE 200 mg/kg constantly showed favorable inhibitory activities against type II diabetes and related complications as comparable to those of metformin 250 mg/kg in HFD mice, respectively. Conclusions : The present work demonstrated that SPE 400, 200 and 100 mg/kg showed favorable anti-diabetic and related complications including obesity refinement activities in HFD mice, through AMPK upregulation mediated hepatic glucose enzyme activity and lipid metabolism-related genes expression, antioxidant defense system and pancreatic lipid digestion enzyme modulatory activities.

Hepatoprotective Activity of Crataegii Fructus Water Extract against Cadmium-induced Toxicity in Rats (카드뮴유발 흰쥐의 간손상에 대한 산사(山査)추출물의 보호효과)

  • Shin, Jeong-Hun;Jo, Mi-Jeong;Park, Sang-Mi;Park, Sook-Jahr;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.249-257
    • /
    • 2010
  • Crataegii Fructus is commonly used as a improving digestion, removing retention of food, promoting blood circulation and resolving blood stasis agent in East Asia. Cadmium (Cd) is widely distributed in the environment due to its use in industry. An exposure to Cd causes dysuria, polyuria, chest pain, hepatic and renal tubular diseases. The liver is the most important target organ when considering Cd-induced toxicity because Cd primarily accumulates in the liver. This study investigated the protective effect of Crataegii Fructus water extract against cadmium ($CdCl_2$, Cd)-induced liver toxicity in H4IIE cells, a rat hepatocyte-derived cell line and in rats. Cell viability was significantly reduced in Cd-treated H4IIE cells in a time and concentration-dependent manner. However, Crataegii Fructus water extract (CFE) protected the cells from Cd-induced cytotoxicity via inhibition of PARP cleavage. To induce acute toxicity in rats, Cd (4 mg/kg body weight) was dissolved in normal saline and intravenously injected into rats. The rats then received either a vehicle or silymarin (as a positive control) or CFE (50, 100 mg/kg/day) for 3 days, and were subsequently exposed to a single injection of Cd. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were significantly increased by Cd treatment. In contrast, pretreatment with CFE reduced ALT, AST and LDH. In histopathological analysis, CFE reduced the hepatic degenerative regions and the number of degenerative hepatocytes. These are considered as direct evidences that Crataegii Fructus has favorable inhibitory effects on the Cd-intoxicated liver damages. The efficacy of Crataegii Fructus shows slight lower than that of silymarin in the present study.

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

Review of Pharmacological Effects of Coptidis Rhizoma and its Bioactive Compounds (황련(黃連)과 구성 생화합물의 약리작용에 대한 고찰)

  • Kim, Ki Bae;Lee, Hyung Tak;Ku, Kyung Howi;Hong, Jin Woo;Cho, Su In
    • The Journal of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.160-183
    • /
    • 2012
  • Objectives: Coptidis Rhizoma is one of the most popular and multi-purpose herbs in traditional medicine. The purpose of this study was to contribute to research and applications of Coptidis Rhizoma in clinic, by analyzing and reviewing international studies on its chemical compositions and pharmacological effects. Methods: This study analyzed 344 articles published from 2000 to 2010 in PubMed, Refworks, Riss, and KTKP. The search keywords were "Coptis chinensis", "Coptis japonica", "Coptidis Rhizoma", "huanglian" and "huanglian in Chinese". From them, we selected 114 articles which met our inclusion criteria. Results: This study reviewed 114 articles on Coptidis Rhizoma and its active components in terms of 'Active components', 'Experimental studies', 'Clinical studies', 'Industrial use' and 'Side Effects/Toxicity'. Conclusions: The active components of Coptidis Rhizoma are berberine, coptisine, epiberberine, palmatine, jateorrhizine, magnoflorine, worenine, etc. It is reported that Coptidis Rhizoma and its active components have anti-inflammatory, antibacterial, antitumor, and antioxidant activity, and cardiovascular, hepatoprotective, antidiabetic, neuroprotective, gastrointestinal, pain relieving, discharge phlegm and metrocyte proliferation effects. Moreover, we found that Coptidis Rhizoma can be used for bath preparation, cosmetic products and as a natural antimicrobial substance.

Antioxidant Effect and Liver Protection Effect of Spatholobi Caulis Water Extract (계혈등 물추출물의 항산화 및 간보호효과)

  • Lee, Jae-Jun;Choi, Hong-Sik;Kim, Seung-Mo
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.47-56
    • /
    • 2011
  • Objectives : This study investigated whether the water extract of Spatholobi Caulis (SCE) has the ability to protect hepatocyte against oxidative stress induced by tert-butylhydroperoxide (tBHP) in vitro and $CCl_4$ in vivo. Methods : In vitro, HepG2 cells pre-treated with Spatholobi Caulis water extract (1, 3, 10, $30{\mu}g$/ml) for 12h and further incubated with tBHP ($100{\mu}M$) for the next 12h. Cell viability was assessed by MTT assay. In vivo, rats were orally administrated with the aqueous extract of Spatholobi Caulis (SCE; 50, 100 mg/kg) for 4 days and then, injected with $CCl_4$ 1 mg/kg body weight to induce acute liver damage. Results : Treatment with SCE inhibited cell death induced by tBHP, as evidenced by alterations in the levels of the proteins associated with apoptosis:SCE prevented a decrease in $Bcl_2$, and cleavage of poly(ADP-ribose)polymerase and pro-caspase-3. Moreover, SCE inhibited the ability of tBHP to generate $H_2O_2$ production, thereby restoring GSH content. Moreover, SCE treatments in rats effectively decreased liver injuries induced by a single dose of $CCl_4$, as evidenced by decreases in hepatic degeneration and inflammation as well as plasma alanine aminotransferase and lactate dehydrogenase activities. Consistently, treatments of SCE also protected liver in rats stimulated by $CCl_4$, as indicated by restoration GSH and prevention of MDA in the liver. Conclusions : SCE has the ability 1) to protect hepatocyte against oxidative stress induced by tBHP and 2) to prevent $CCl_4$-inducible acute liver toxicity. Present findings may be informative not only in elucidating the pharmacological mechanism of Spatholobi Caulis, but in determining its potential application for oxidative cellular damage in the liver.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.

Effect of Culture Broth of Cordyceps militaris on Recovery of Mice Hepatic Damage Caused by Benzo($\alpha$)pyrene-Treatment (벤조피렌으로 유발된 흰쥐 간독성에 대한 번데기동충하초 배양액의 회복효과)

  • Jo, Sung-Jun;Lee, Tae-Hee;Kim, Jin-Man;Han, Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.416-418
    • /
    • 2009
  • The hepatoprotective effect of Cordyceps militaris culture broth was determined using HaM/ICR strain mice. Compared to control, the intra-peritoneal injection of benzo($\alpha$)pyrene (B($\alpha$)P) remarkably increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and the level of lipid peroxide (LPO) in liver tissue, which mean the liver was damaged by B($\alpha$)P. However, compared to B($\alpha$)P, oral administration of C. militaris culture broth showed decrement of AST, ALT, and LPO activities and increment GST activity and GSH level in liver tissue. These suggest that C. militaris culture broth recovered hepatic damage induced by B($\alpha$)P.

Effect of a Water Soluble Dimethyl Dimethoxy Biphenylate Derivative on the Carbon Tetrachloride Induced Hepatotoxicity in Rats (수용성 Dimethyl Dimethoxy Biphenylate 유도체의 간염 치료 효과)

  • Moon, Jeon-Ok;Cheung, Kyeung-Ook;Kim, Su-Hyun;Kim, Nam-Duk;Lee, Sung-Kwang;Yang, Hee-Sun;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.173-179
    • /
    • 1997
  • A water-soluble DDB derivative (Bis{2-(methylamino)ethyl}-4,4-dimethoxy-5,5',6,6'-dimethylenedioxy-biphenyl-2,2'-dicarboxylate, DDB-S) was synthesized and its therapeutic effects on the liver damage induced by carbon tetrachloride in rats were evaluated. Oral administration of DDB-S reduced the aspartate aminotransferase(AST) and alanine aminotransferase(ALT) activities and increased total protein and albumin contents in the serum of the carbon tetrachloride intoxicated rat. Therapeutic effects of DDB-S by intravenous injection was also investigated using carbon tetrachloride intoxicated rats. Histological studies showed that IV injection of DDB-S had improved the typical necrosis around centrilobular area in liver tissue due to the carbon tetrachloride intoxication and also prevented the elevation of liver weigh/body weight ratio. IV administration of DDB-S to $CCl_4-treated$ rats significantly decreased AST & ALT activities and also prevented the decrease of aniline hydroxylation activity of the liver. These results indicate that i.v. administration of DDB-S is very effective in recovering the liver function in $CCl_4-treated$ rats.

  • PDF

Protective Effect Naringin on Carbon Tetrachloride Induced Hepatic Injury in Mice (나린진(Naringin)의 $CCl_4$에 의한 급성 간독성 보호효과)

  • Chae, Soo-Chul;Kho, Eun-Gyeong;Choi, Seung-Hyun;Ryu, Geun-Chang
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • The protective effects of the Naringin, on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and the possible mechanisms involved in this protection were investigated in mice. Pretreatment with Naringin prior to the administration of $CCl_4$ significantly prevented an increase in serum alanine, aspartate aminotransferase activity and hepatic lipid peroxidation in a dose-dependent manner. In addition, pretreatment with Naringin also significantly prevented the depletion of glutathione (GSH) content in the livers of $CCl_4$-induced mice. However, reduced hepatic glutathione levels was unaffected by treatment with Naringin alone. In addition, Naringin prevented $CCl_4$-induced apoptosis and necrosis, as indicated by a liver DNA laddering. To determine whether caspase-8,-3 pathway involved in $CCl_4$-induced acute liver injury, caspase-8, -3 activities were tested by ELISA. Naringin attenuated $CCl_4$induced caspase-8, -3 activities in mouse livers. $CCl_4$-induced hepatotoxicity was also prevented, as indicated by a liver histopathologic study. The effects of Naringin on the cytochrome P450 (CYP) 2E1, the major isozyme involved in $CCl_4$ were also investigated. Treatment of mice with Naringin resulted in a significant decrease of the CYP2E1-dependent hydroxyl at ion and aniline in a dose-dependent manner. These findings suggest that protective effects of Naringin against the $CCl_4$-induced hepatotoxicity may be due to its ability to block CYP2E1-mediated $CCl_4$ bioactivation and that is also protects against caspase-8, -3 pathway mediated apoptosis.

Hepatoprotective Effect of Catechin Isolated from the Root of Rosa rugosa Thunb (해당화 뿌리에서 분리한 Catechin의 간보호효과)

  • Hur, Jong-Moon;Kim, In-Ho;Park, Jong-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • The root of Rosa rugosa has been used in folkloric medicine as a treatment agent for diabetes. In the present study, we investigated whether (+)-catechin isolated from this plant can change the activities of hepatic drug metabolizing enzymes in rats treated with bromobenzene. Pretreatment with (+)-catechin gave no effects on the activities of aminopyrine N-demethylase and aniline hydroxylase, enzymes forming toxic bromobenzene epoxide intermediates and glutathione Stransferase, an enzyme removing toxic epoxides. However, the activity of epoxide hydrolase, an enzyme detoxifying the bromobenzene toxic intermediates was mildly recovered by (+)-catechin treatment.