Hepatoprotective Effect of Catechin Isolated from the Root of Rosa rugosa Thunb

해당화 뿌리에서 분리한 Catechin의 간보호효과

  • Hur, Jong-Moon (Department of Oriental Medicine Resources and Research Institute of Korean Oriental Medicine, Sunchon National University) ;
  • Kim, In-Ho (Department of Oriental Medicine Resources and Research Institute of Korean Oriental Medicine, Sunchon National University) ;
  • Park, Jong-Cheol (Department of Oriental Medicine Resources and Research Institute of Korean Oriental Medicine, Sunchon National University)
  • 허종문 (순천대학교 한약자원학과 및 한의약연구소) ;
  • 김인호 (순천대학교 한약자원학과 및 한의약연구소) ;
  • 박종철 (순천대학교 한약자원학과 및 한의약연구소)
  • Published : 2007.02.28

Abstract

The root of Rosa rugosa has been used in folkloric medicine as a treatment agent for diabetes. In the present study, we investigated whether (+)-catechin isolated from this plant can change the activities of hepatic drug metabolizing enzymes in rats treated with bromobenzene. Pretreatment with (+)-catechin gave no effects on the activities of aminopyrine N-demethylase and aniline hydroxylase, enzymes forming toxic bromobenzene epoxide intermediates and glutathione Stransferase, an enzyme removing toxic epoxides. However, the activity of epoxide hydrolase, an enzyme detoxifying the bromobenzene toxic intermediates was mildly recovered by (+)-catechin treatment.

해당화 뿌리는 우리나라 민간에서 당뇨병 치료제로 사용되는 약용식물이다. Bromobenzene으로 간독성을 유발한 흰쥐에 뿌리에서 분리한 화합물인 (+)-catechin을 경구투여하여 bromobenzene대사계에 미치는 효소활성을 간독성 물질인 bromobenzene 3,4-oxide 생성에 관여하는 효소인 aminopyrine N-demetylase와 aniline hydroxylase와 독성 epoxide 대사중간체를 무독화 시키는 epoxide hydrolase와 glutathione S-transferase에 활성을 관찰하였다. (+)-Catechin의 투여가 aminopyrine N-demetylase, aniline hydroxylase 및 glutathione S-transferase에 활성에는 영향을 주지 못하였으나, epoxide hydrolase는 positive control로 사용한 ascorbic acid에 미치지 못하지만, bromobenzene 처리군 보다 39% 효소활성을 회복 시켰다. 따라서, (+)-catechin은 간독성 물질을 무독화시키는 epoxide hydrolase의 활성을 회복시켜 간보호 활성을 나타냄을 알 수 있었으며, 해당화에서 분리한 사포닌 성분인 rosamultin도 이효소의 활성을 증가시킴으로 인해 보호활성을 나타내는 것으로 보고된바 있다.

Keywords

References

  1. Bidlack WR, Lowery GL (1982) Multiple drug metabolism: pnitroanisole reversal of acetone enhanced aniline hydroxylation. Biochem. Pharmacol. 31:311-317 https://doi.org/10.1016/0006-2952(82)90176-9
  2. Casini A, Giorli M, Hyland RJ, Serroni A, Gilfor D, Farberg JL (1982) Mechanisms of cell injury in the killing of cultured hepatocytes by bromobenzene. J. Biol. Chem. 257:6721-6728
  3. Cho EJ, Yokozawa T, Kim HY, Shibahara N, Park JC (2004) Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am. J. Chin. Med. 32:487-496 https://doi.org/10.1142/S0192415X04002132
  4. Grewal KK, Rafeiro E, Racz WJ (1996) Bromobenzene and furosemide hepatotoxicity: Alterations in glutathione, protein thiols, and calcium. Can. J. Physiol. Pharmacol. 74:257-264 https://doi.org/10.1139/cjpp-74-3-257
  5. Habig WH, Pabist, MJ, Jakoby WB (1974) The first step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139
  6. Hammock BD, Hasegawa LS (1982) Spectrophotometric assay for mammalian cytosolic epoxide hydrolase using trans-stilbene oxide as the substrate. Biochem. Pharmacol. 31:1979-1984 https://doi.org/10.1016/0006-2952(82)90408-7
  7. Jung HJ, Nam JH, Choi J, Lee KT, Park HJ (2005) 19${\alpha}$-Hydroxyursane-Type Triterpenoids: Antinociceptive Antiinflammatory Principles of the Roots of Rosa rugosa. Biol. Pharm. Bull. 28:101-104 https://doi.org/10.1248/bpb.28.101
  8. Kalender Y, Yei M, Kalender S (2005) Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology. 209:39-45 https://doi.org/10.1016/j.tox.2004.12.003
  9. Lowry OH, Rosebrough, NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275
  10. Monks TJ, Lau SS, Pohl LR, Gillette JR (1984) The mechanism of formation of o-bromophenol from bromobenzene. Drug Metab. Dispos. 12:193-198
  11. Namba, T (1994) The encyclopedia of Wakan-Yaku (traditional Sino-Japanese medicnes) with color pictures Vol (II). Hoikusha, Tokyo. p. 118
  12. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hentisch reaction. J. Biol. Chem. 55:412-416
  13. Park JC, Kim SC, Hur JM, Choi SH, Lee KY, Choi JW (2004) Anti-hepatotoxic effects of Rosa rugosa root and its compound, rosamultin, in rats intoxicated with bromobenzene. J. Med. Food. 7:436-441 https://doi.org/10.1089/jmf.2004.7.436
  14. Park JC, Ok KD (1993) Phenolic compounds isolated from Rosa rugota Thnb. in Korea. Yakhak Hoeji. 37:365-369
  15. Park JC, Young HS, Lee SH (1993) A tannin compound isolated from the underground part of Rosa rugosa Thunb. Kor. J. Pharmacogn. 24:319-324
  16. Reid WD, Christie B, Krishna G, Mitchell JR, Moskowitz J, Brodie BB (1971) Bromobenzene metabolism and hepatic necrosis. Pharmacol. 6:41-55 https://doi.org/10.1159/000136226
  17. Siegers CP, Fruhling A, Younges M (1983) Influence of dithiocarb, (+)-catechin and silybine on halotane hepatotoxicity in the hypotic rat model. Acta. Pharmacol. Toxicol. 53:125-129 https://doi.org/10.1111/j.1600-0773.1983.tb01879.x
  18. Young HS, Park JC, Choi JS, Suh SS (1990) Anthhypertensive activity and triterpene from the underground parts of Rosa rugosa. J. Oriental Bot. Res. 3:83-89
  19. Young HS, Park JC, Choi JS (1987) Triterpenoid glycosides from Rosa rugosa. Arch. Pharm. Res. 10:219-222 https://doi.org/10.1007/BF02857743
  20. Yuk DY, Lee MY, Yun YP (2004) Effect of green tea catechin on acute hepatotoxicity in rats. J. FD Hyg. Safety. 19:105-111
  21. Zampaglione N, Jollow DJ, Mitchell JR, Stripp B, Hamrick M, Gillette JR (1973) Role of detoxifying enzymes in bromobenzeneinduced liver necrosis. J. Pharm. Exp. Therp. 187:218-227
  22. 문화방송 (1987) 한국민간요법대전. 금박출판사. 서울. p. 179
  23. 정보섭, 신민교 (1998) 도해 향약(생약)대사전. 영림사. 서울. p. 636-658
  24. 최옥자 (1999) 약초의 성분과 이용. 일월서각. 서울. p. 345-371
  25. 한국자원식물연구소 (1989) 한국식물대보감-자원편 (상권). 제일출판사. 서울. p. 384-498