• Title/Summary/Keyword: Hepatocyte growth factor

Search Result 67, Processing Time 0.024 seconds

The Effects of Exercise on Neurotrophins, Hepatocyte Growth Factor (HGF), and Oxidative Stress in Obese Children (운동 트레이닝이 비만 어린이의 neurotrophins, HGF (hepatocyte growth factor)와 산화스트레스에 미치는 영향)

  • Woo, Jin-Hee
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.569-574
    • /
    • 2012
  • This study was conducted to investigate the effect of exercise on oxidative stress, nerve growth, and hepatocyte growth factors in obese children. After 12 weeks of aerobic exercise training, the aforementioned parameters before and after the training were compared. As a result, the nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were shown to be lower in the OT than in the NT before and after the training, respectively ($p$ <0.05). The NGF was shown to have increased in both groups after the training ($p$ <0.05). The hepatocyte growth factor (HGF) was shown to be higher in the OT than in the NT before the training ($p$ <0.05), with no difference found afterwards. The malondialdehyde (MDA), ox-LDL, and 8-OHdG (Oxo-2'-deoxyguanosine) were shown to be higher in the OT than in the NT ($p$ <0.05). For ox-LDL, a difference was found between before and after the training ($p$ <0.05). The results of this study showed that obesity induced oxidative stress and caused the abnormalities of nerve and HGF secretion in obese children, and that the 12 weeks of aerobic exercise increased NGF levels, thereby promoting the development of neurogenesis in children.

Function of hepatocyte growth factor in gastric cancer proliferation and invasion

  • Koh, Sung Ae;Lee, Kyung Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells

  • Insook, Yang;Seung Yeon, Oh;Suin, Jang;Il Yong, Kim;You Me, Sung;Je Kyung, Seong
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.633-638
    • /
    • 2022
  • Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease.

The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis

  • You, Weon-Kyoo;McDonald, Donald M.
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.833-839
    • /
    • 2008
  • Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

Maternal Plasma Hepatocyte Growth Factor Concentrations in Women Who Subsequently Developed Preeclampsia

  • Kim, Shin Young;Park, So Yeon;Kim, Mi Jin;Kim, Moon Young;Choi, Kyu Hong;Kwak, Dong Wook;Han, Yoo Jung;Ryu, Hyun Mee
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • Purpose: The aim of this nested case-control study was to investigate the association between hepatocyte growth factor (HGF) concentrations in maternal plasma and the risk of developing preeclampsia. Materials and Methods: Plasma HGF concentration were measured in 52 women who subsequently developed preeclampsia and 104 normal pregnant women at the time of genetic amniocentesis (15-20 weeks) by enzyme-linked immunosorbent assay. Results: Maternal plasma HGF concentrations were significantly higher in women with subsequent preeclampsia (median: 737.8 ng/mL vs. 670.4 ng/mL, P=0.003) than in normal controls. However, HGF concentrations were not significantly different between subgroups by preeclamptic complications. After adjusting for potential confounding factors, women with HGF concentrations ${\geq}702.5ng/mL$ had a 3.2-fold increased risk (95% CI 2.7-5.4, P<0.001) of subsequent development of preeclampsia compared with women with HGF concentrations <702.5 ng/mL. Conclusion: Elevated maternal plasma HGF concentrations in the early second-trimester are associated with an increased risk of developing preeclampsia.