Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells |
Insook, Yang
(Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University)
Seung Yeon, Oh (Korea Mouse Phenotyping Center (KMPC), Seoul National University) Suin, Jang (Korea Mouse Phenotyping Center (KMPC), Seoul National University) Il Yong, Kim (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University) You Me, Sung (Korea Mouse Phenotyping Center (KMPC), Seoul National University) Je Kyung, Seong (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University) |
1 | Michalopoulos GK (2021) Novel insights into liver homeostasis and regeneration. Nat Rev Gastroenterol Hepatol 18, 369-370 DOI |
2 | Kurinna S and Barton MC (2011) Cascades of transcription regulation during liver regeneration. Int J Biochem Cell Biol 43, 189-197 DOI |
3 | Michalopoulos GK (2013) Principles of liver regeneration and growth homeostasis. Compr Physiol 3, 485-513 DOI |
4 | Ma JZ, Yang F, Zhou CC et al (2017) METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology 65, 529-543 DOI |
5 | Meng J, Zhao Z, Xi Z et al (2022) Liver-specific Mettl3 ablation delays liver regeneration in mice. Genes Dis 9, 697-704 DOI |
6 | Cao X, Shu Y, Chen Y et al (2021) Mettl14-mediated m6a modification facilitates liver regeneration by maintaining endoplasmic reticulum homeostasis. Cell Mol Gastroenterol Hepatol 12, 633-651 |
7 | Jiang X, Liu B, Nie Z et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6, 74 |
8 | Lu J, Qian J, Yin S et al (2020) Mechanisms of RNA N6-methyladenosine in hepatocellular carcinoma: from the perspectives of etiology. Front Oncol 10, 1105 |
9 | Lin S and Gregory RI (2014) Methyltransferases modulate RNA stability in embryonic stem cells. Nat Cell Biol 16, 129-131 DOI |
10 | Shulman Z and Stern-Ginossar N (2020) The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 21, 501-512 DOI |
11 | Hua W, Zhao Y, Jin X et al (2018) METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol 151, 356-365 DOI |
12 | Yang X, Zhang S, He C et al (2020) METTL14 suppresses proliferation and metastasis of colorectal cancer by downregulating oncogenic long non-coding RNA XIST. Mol Cancer 19, 46 |
13 | Lin Z, Hsu PJ, Xing X et al (2017) Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res 27, 1216-1230 DOI |
14 | Fu Y, Dominissini D, Rechavi G et al (2014) Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15, 293-306 DOI |
15 | Jia G, Fu Y and He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29, 108-115 DOI |
16 | Malik R and Hodgson H (2002) The relationship between the thyroid gland and the liver. QJM 95, 559-569 DOI |
17 | Fausto N, Campbell JS and Riehle KJ (2006) Liver regeneration. Hepatology 43, S45-53 DOI |
18 | Akerman P, Cote P, Yang SQ et al (1992) Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 263, G579-G585 DOI |
19 | Cressman DE, Greenbaum LE, DeAngelis RA et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379-1383 DOI |
20 | Cruise JL, Houck KA and Michalopoulos GK (1985) Induction of DNA synthesis in cultured rat hepatocytes through stimulation of α1 adrenoreceptor by norepinephrine. Science 227, 749-751 DOI |
21 | Michalopoulos GK and DeFrances M (2005) Liver regeneration. Adv Biochem Eng Biotechnol 93, 101-134 |
22 | Higgins GM and Anderson RM (1931) Experimental pathology of the liver. I. Restoration of the white rat following partial surgical removal. Arch Path 12, 186-202 |
23 | Mitchell C and Willenbring H (2008) A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 3, 1167-1170 DOI |
24 | Yang I, Son Y, Shin JH et al (2022) Ahnak depletion accelerates liver regeneration by modulating the TGF-beta/Smad signaling pathway. BMB Rep 55, 401-406 DOI |
25 | Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213, 286-300 DOI |
26 | Olsen PS, Poulsen SS and Kirkegaard P (1985) Adrenergic effects on secretion of epidermal growth factor from Brunner's glands. Gut 26, 920-927 DOI |
27 | Fausto N (2000) Liver regeneration. J Hepatol 32, 19-31 DOI |
28 | Mullany LK, White P, Hanse EA et al (2008) Distinct proliferative and transcriptional effects of the D-type cyclins in vivo. Cell Cycle 7, 2215-2224 DOI |
29 | Gerlach C, Sakkab DY, Scholzen T et al (1997) Ki-67 expression during rat liver regeneration after partial hepatectomy. Hepatology 26, 573-578 DOI |
30 | Marongiu F, Marongiu M, Contini A et al (2017) Hyperplasia vs hypertrophy in tissue regeneration after extensive liver resection. World J Gastroenterol 23, 1764-1770 DOI |
31 | Li J, Zhu L, Shi Y et al (2019) m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res 11, 6084-6092 |
32 | Kim YJ, Kim HJ, Lee WJ et al (2020) A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model. Lab Anim Res 36, 3 |