• 제목/요약/키워드: Helium refrigeration system

검색결과 27건 처리시간 0.011초

Roebuck 냉동기를 응용한 회전형 헬륨 재응축 장치 (Rotating helium-recondensing system using Roebuck refrigerator)

  • 정상권;이창규
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.464-471
    • /
    • 1999
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field winding in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are also explained to identify entropy generation that degrades the performance of the system.

  • PDF

Helium Recondensing System Utilizing Cascade Roebuck Refrigerators

  • Jeong, Sang-Kwon;Lee, Chang-Gyu;Jung, Je-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.108-118
    • /
    • 2000
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field wind-ing in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2 K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are explained to identify entropy generation that degrades the performance of the system.

  • PDF

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

The maintenance record of the KSTAR helium refrigeration system

  • Moon, K.M.;Joo, J.J.;Kim, N.W.;Chang, Y.B.;Park, D.S.;Kwag, S.W.;Song, N.H.;Lee, H.J.;Lee, Y.J.;Park, Y.M.;Yang, H.L.;Oh, Y.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.6-9
    • /
    • 2013
  • Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB#1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there's another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

KSTAR 저온헬륨설비 시운전 결과 (Commissioning results of the KSTAR helium refrigeration system)

  • 조광운;장현식;박동성;주재준;문경모;김양수;박주식;양승한;에릭포브
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.64-68
    • /
    • 2009
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9kW at 4.5K without liquid nitrogen $(LN_2)$ pre-cooling has been manufactured and installed for such purposes. In this proceeding, we will present the commissioning and initial operation results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

KSTAR 헬륨냉동기의 압축시스템 시운전 결과 (Commissioning Results of the Warm Compression System for the KSTAR Helium Refrigeration System)

  • 박동성;장현식;주재준;문경모;조광운;김양수;박주식;권일근;조면철;양승한
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.125-130
    • /
    • 2008
  • The main components of the KSTAR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The WCS itself consists of the compressor station (C/S) and the oil removal system (ORS). The process helium is compressed from 1 bar to 22 bar maximum in the C/S and downstream, the ORS removes the oil mixed in the helium to less than 10 ppbw as per the operation criteria of the cryogenic devices of the KSTAR HRS. After the installation, the pre-commissioning and commissioning activities were started on July, 2007. Before the start-up of the C/S, vibration measurement and the skid reinforcement jobs were performed for stable operation of the C/S. The results of the WCS performance tests met the requirements of the KSTAR HRS but satisfied the vibration level criteria only at the compressors' full load condition.

  • PDF

상용 헬륨압축기를 이용한 네온 냉각 시스템의 냉각특성 실험 (Cooling performance test of neon refrigeration system using commercial helium compressor)

  • 고준석;김효봉;염한길;홍용주;박성제;이공훈
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권3호
    • /
    • pp.36-41
    • /
    • 2011
  • This paper describes experimental investigation on neon refrigeration system using commercial helium compressor. In this paper, neon refrigeration cycle is calculated with assumption of ideal heat exchanger. From analysis, 32.6 K of the lowest temperature and 0.945 of quality after expansion are predicted. Cryogenic heat exchangers for pre cooler and main heat exchanger are designed and fabricated with configuration of tube-in-tube heat exchanger. In experiments, cooling performance test are performed as variation of charging pressure and orifice hole diameter. From experimental results, the lowest temperature of 44.0 K was measured with 500 ${\mu}m$ orifice and 1500 kPa of charging pressure.

Design Considerations on the Standby Cooling System for the integrity of the CNS-IPA

  • Choi, Jungwoon;Kim, Young-ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.104-104
    • /
    • 2015
  • Due to the demand of the cold neutron flux in the neutron science and beam utilization technology, the cold neutron source (CNS) has been constructed and operating in the nuclear research reactor all over the world. The majority of the heat load removal scheme in the CNS is two-phase thermosiphon using the liquid hydrogen as a moderator. The CNS moderates thermal neutrons through a cryogenic moderator, liquid hydrogen, into cold neutrons with the generation of the nuclear heat load. The liquid hydrogen in a moderator cell is evaporated for the removal of the generated heat load from the neutron moderation and flows upward into a heat exchanger, where the hydrogen gas is liquefied by the cryogenic helium gas supplied from a helium refrigeration system. The liquefied hydrogen flows down to the moderator cell. To keep the required liquid hydrogen stable in the moderator cell, the CNS consists of an in-pool assembly (IPA) connected with the hydrogen system to handle the required hydrogen gas, the vacuum system to create the thermal insulation, and the helium refrigeration system to provide the cooling capacity. If one of systems is running out of order, the operating research reactor shall be tripped because the integrity of the CNS-IPA is not secured under the full power operation of the reactor. To prevent unscheduled reactor shutdown during a long time because the research reactor has been operating with the multi-purposes, the introduction of the standby cooling system (STS) can be a solution. In this presentation, the design considerations are considered how to design the STS satisfied with the following objectives: (a) to keep the moderator cell less than 350 K during the full power operation of the reactor under loss of the vacuum, loss of the cooling power, loss of common electrical power, or loss of instrument air cases; (b) to circulate smoothly helium gas in the STS circulation loop; (c) to re-start-up the reactor within 1 hour after its trip to avoid the Xenon build-up because more than certain concentration of Xenon makes that the reactor cannot start-up again; (d) to minimize the possibility of the hydrogen-oxygen reaction in the hydrogen boundary.

  • PDF

확산형 흡수식 냉동시스템의 기포펌프 성능실험 (Experimental Performance Study of the Bubble Pump for the Diffusion Absorption Refrigerating System)

  • 이재효;정의갑;윤재호;정의갑
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.287-292
    • /
    • 2004
  • An experimental investigation was carried out to study the performance of a bubble pump for the diffusion absorption refrigerating system. Ammonia was used as the refrigerant and the helium was charged in order to balance the pressure between the low and high pressure side. As experimental variables, the concentration of ammonia charged into system, heat input, and the pressure of helium were selected. Experimental results show that the generation rate of ammonia vapor and the circulation rate of diluted ammonia solution were increased as the heat input increases, but the ratio of the solution to vapor flow rate was decreased. The generation rate of refrigerant vapor and the circulation rate of diluted ammonia solution increased as the system pressure decreased. Finally under the condition of 25 bars, the concentration of rich ammonia solution was not affected by the generation rate of ammonia vapor and the circulation of diluted ammonia solution.

Real operation of 2 kW class reverse-Brayton refrigeration system with using scroll compressor package

  • Kim, Hyobong;Yeom, Hankil;Choo, Sangyoon;Kim, Jongwoo;Park, Jiho;In, Sehwan;Hong, Yong-Ju;Park, Seong-Je;Ko, Junseok
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.40-44
    • /
    • 2020
  • This paper describes the real operation of 2 kW class reverse-Brayton refrigeration system with neon as a working fluid. The refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa at low and high pressure side, respectively. Compressor package consists of several helium scroll compressors witch are originally used for driving GM cryocooler. Three segments of plate heat exchanger are adopted to cover the wide temperature range and the refrigeration power is produced by turbo expander. The developed refrigeration system is successfully operated at its target temperature of 77 K. In experiments, all parameters such as pressure, temperature, mass flow rate and valve opening are measured to investigate characteristics during cool-down process and normal state. The difference between design and real operation is discussed with measured experimental data. At normal state of 77 K operation, the developed reverse-Brayton refrigeration system shows 1.83 kW at 68.2 K of cold-end temperature.