• Title/Summary/Keyword: Helicopter system

Search Result 468, Processing Time 0.028 seconds

Position Tracking Control of an Autonomous Helicopter by an LQR with Neural Network Compensation (자율 주행 헬리콥터의 위치 추종 제어를 위한 LQR 제어 및 신경회로망 보상 방식)

  • ;Om, Il-Yong;Suk, Jin-Young;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.930-935
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Combining an LQR method and a proportional control forms a simple PD control. Since LQR control gains are set for the velocity control of the helicopter, a position tracking error occurs. To minimize a position tracking error, neural network is introduced. Specially, in the frame of the reference compensation technique for teaming neural network compensator, a position tracking error of an autonomous helicopter can be compensated by neural network installed in the remotely located ground station. Considering time delay between an auto-helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network performs better than that of LQR itself.

Wireless Connectivity flight Performance Evaluation of Unmanned Helicopters

  • Shin Low-Kok;Park Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.139-142
    • /
    • 2006
  • Numerous simulation studies and researches have recently revealed the rapid development and evolution in the emerging area of intelligent unmanned aerial vehicle (UAV). This study aims to develop a flight performance evaluation about the wireless unmanned helicopter. The process includes the design and testing of flight hardware and software that interprets sensor data. For the unmanned helicopter used in this research, an inertial sensor that provides posture (roll, pitch and yaw angles) and a Bluetooth is used to provide wireless connection between the user's pc and the helicopter were installed in the helicopter the helicopter's pitch, roll and yaw were the communication data. The accuracy of the system was confirmed by a computer simulation. The software also has been developed to support operators and displays helicopter position and posture by graphics.

  • PDF

Shift Steering Control of 2-axis ARM Helicopter based on a Neural Network (신경망 학습을 이용한 2축 ARM 헬리콥터의 중심이동 조향법)

  • Bae, Hyun-Soo;Kim, Byung-Chul;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.677-683
    • /
    • 2015
  • This paper proposes a helicopter direction adjustment system using barycenter shift. Most conventional methods for direction adjustment of uniaxial helicopters rely on the angle of inclination of the main rotor. However, the inherent burden of the bearing of the main rotor and serious abrasion of the helicopter using the above methods may results in loss of balance. To decrease abrasion and enhance the barycenter stability, the proposed method was used to shift the barycenter of the helicopter instead of the main rotor for direction adjustment. We set a biaxial ARM on a uniaxial helicopter to adjust the direction of ARM pointing as well as to realize stable direction control when the helicopter loses its balance. The method may enhance the landing safety of helicopters in emergencies. Uniaxial helicopters can be controlled under any environment by adjusting the motor parameters of the ARM which is dependent on the center of mass using neural network. The experiment results show that the helicopter can return to the starting position quickly under the external disturbance.

Current Technology Status of Bearingless Rotor Hub system for Helicopter (헬리콥터 무베어링 로터 허브 시스템 기술동향)

  • Kim, Deog-Kwan;Yun, Cheol-Yong;Song, Keun-Woong;Kim, Seung-Bum;Kim, Seung-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.118-130
    • /
    • 2010
  • In this paper, it is described the current technology status of bearingless rotor hub system for helicopter which is one of major rotor hub system. First, the advantages and disadvantages of major helicopter rotor hub system are described and compared each other. The unique characteristics of bearingless rotor hub system are described compared to other types of rotor hub systems. Next, the main function, role and characteristics of the sub-components of bearingless rotor hub system are described. Furtherly, recent helicopters which adopt this bearingless rotor hub system are described and introduced.

  • PDF

Development of an Integrated High Fidelity Helicopter and Engine Simulation for Control System Design (헬리콥터용 가스터빈 엔진의 제어기 설계를 위한 고충실도 통합 시뮬레이션 개발)

  • Choi, Kee-Young;Jang, Se-Ah;Choi, Ki-Young;Eom, Joo-Sang;Lee, Beom-Suk;Son, Young-Chang;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.249-257
    • /
    • 2010
  • Full authority digital engine control systems for gas turbine engines are replacing conventional mechanical control units rapidly. However, setting up design processes of controllers for high performance helicopter engines are not well known because of the complexity of the total system. This paper presents a high fidelity helicopter and engine simulation for control system design and analysis. Using this environment, a feedforward schedule was set up for a utility helicopter. The total engine simulation with the new controller showed better or equal performance compared to the total engine simulation with the pre-existing controller.

Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method

  • Kim, Min-Jae;Hong, Ji-Seung;Kim, Chang-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and solved DMS technique. The DMS method is easy in handling constraints and it has large convergence radius compared to other strategies. When parameterized with piecewise constant controls, the problems become most effectively tractable because the search direction is easily estimated by solving the structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. This study focused on the approximation of the KKT system using the matrix exponential and its integrals. The propose method is validated by solving optimal control problems for the linear system where the KKT system is exactly expressed with the matrix exponential and its integrals. The trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the effects of algorithmic details. The results show the matrix exponential approach to compute gradients and the Hessian matrix is most efficient among the implemented methods when combined with the mixed time integration method for the system dynamics. The analyses with the proposed method show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used to solve critical areas of helicopter flight dynamic problems.

Extraction of Horizontal Alignment Information using RC Helicopter Photogrammetric System (무선조정 헬리곱터 사진측량시스템을 이용한 도로의 평면선형정보 추출)

  • Jang, Ho-Sik;Roh, Tae-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this study, the method of extracting road centerline's coordinate and road facilities is presented using RC helicopter photogrammetry system. From the survey of extracted road centerline, the errors turned out to be -0.117m ~ 0.103m on the X-axis and -0.014m ~ 0.009m on the Y-axis when RC Helicopter photogrammetry system utilized. By application of this system, hereafter, not only management of road facilities but also construction of DB would be enable which need positioning and design of alignment on the access is not easy area such as traffic congestion or toparchy area.

  • PDF

Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter (헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Hwang, In-Hee;Kim, Tae-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.

Evaluation of Spray Flight Attitude for Agricultural Roll-balanced Helicopter using Kalman Filter (칼만필터를 이용한 농용 균평헬리콥터의 살포비행자세 평가)

  • Park, Hee Jin;Koo, Young Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.342-351
    • /
    • 2012
  • Purpose: Aerial spraying with an agricultural unmanned helicopter became a new paradigm in the agricultural practice. Laterally tilting behavior of a conventional agricultural helicopter, resulting in the biased down-wash and uneven spray deposit is a physically intrinsic phenomenon while hovering and cruise flights. Authors studied and developed a roll-balanced agricultural helicopter with a raised pylon tail rotor system. In this study, the attitude of the roll-balanced helicopter was determined using the Kalman filter algorithm, and the quality of roll balancing of a bare-airframe helicopter was evaluated. Methods: Instantaneous attitudes were estimated using the advantage of gyroscope, followed by the long term correction and prediction using accelerometer data for the advantage of convergence. The attitudes of the fuselage were calculated by applying the Kalman filter algorithm. The spraying maneuver of the helicopter was performed at a field of 50 m long, and the attitude data were acquired and evaluated. Results: The determination of attitude using the inertial measurement unit(IMU) and Kalman filter was reliable and practical. The intrinsic attitude of the developed helicopter was stable and roll-balanced. The deviation of roll angle was ${\pm}6.3^{\circ}$ with an average of $0^{\circ}$, referring to roll-balanced. Conclusions: Handling quality of the roll attitude determined to be steadily balanced. The balancing behavior of the developed helicopter would result in an even spray pattern during aerial application.

A Study on the Development of Control Loading System for Helicopter Flight Training Device (헬리콥터 비행훈련장치용 조종력재현장치의 개발에 관한 연구)

  • Han, Dong-Ju;Lee, Sang-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1031-1038
    • /
    • 2007
  • A study on the development of control loading system for a pilot command in the helicopter flight training device is performed. The key issue of the device is how to provide closely the real feeling of the stick forces to the trainer during the flight training. Focusing on this proviso and considering the suitable approach than the complexity of the hydraulic system, we adopt the AC servo motor system although its inherent disadvantages such as the torque ripple and the stick-slip friction effect at a low control force. However, we overcome these detrimental effects by introducing the appropriate control device and the robust structural design of the actuating system, thereby the feasibility and applicability to the system can be obtained by showing good performance, meeting the required specification.