• Title/Summary/Keyword: Helical Gear Vibration

Search Result 39, Processing Time 0.029 seconds

Vibro-acoustic Characteristics of a Cylindrical Shell Type Gearbox Models by Helical Gear Excitation (헬리컬기어 가진에 의한 원통형 기어박스 모델의 진동음향 특성)

  • Park, Chan IL
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • Helical gear excitation is transmitted to a gearbox through the shafts and bearings and the vibration of the gearbox radiates the noise in the air. Therefore gearbox modeling is essential to evaluate the gear noise. This work deals with vibration and acoustic analysis of a cylindrical shell-type gearbox with/without holes excited by helical gears and focuses on the development of the simple gearbox model. To do so, helical gears and bearing forces are calculated. Gearbox with/without holes is modeled by the aluminum end plates and PMMA cylindrical shell body. The vibration mode and the forced harmonic response were calculated by the commercial FE software and the end plate of the gearbox is more contributed to vibration than the body. Acoustic analysis was also conducted by the commercial acoustic software and a cylindrical shell type gearbox with/without holes has the similar vibro-acoustic characteristics.

Experimental Study on Performance Tests of Vibration Source for Helical Gears (헬리컬 기어계의 가진원 성능 평가에 대한 실험적 연구)

  • Park, Gwang-Min;Kim, Chan-Jung;Lee, Jae-won;Lee, Bong-Hyun;Kim, Wan-soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.602-603
    • /
    • 2014
  • A gearbox can be regarded as a self-exciting dynamic system, which has a vibration source. Transmission error (TE) is considered to be an main excitation source for gear noise and vibration. The TE excitation is transmitted through the gears, shafts, bearings, and housings. Thus, an experimental approach to each mechanical parts is useful in order to understand and evaluate the dynamic behaviour of a gearbox. This study is focused on the transmission and vibration characteristics of a helical gear system in development stage. In addition, by considering the tolerance factors and resonance characteristics, the vibration response of actual dynamic system is analysed.

  • PDF

Radiated Noise of Helical Gear-plate System (헬리컬기어-플레이트 시스템의 방사소음)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1048
    • /
    • 2007
  • This work analytically investigated the radiated noise of a helical gear-housing system due to the excitation of helical gears. The helical gears were modeled as a 12-degree of freedom mass-spring-damper system; the shaft was modeled as a rod, a beam, and a torsional shaft; and the gear housing was modeled as a clamped circular plate with viscous damping. The modeling of this system used transfer matrices for helical gears, shafts, and bearings. Damping for both the bearings and the plate were obtained by modal testing. For the evaluation of noise, sound pressure from the plate due to the force and the moment in both radial and tangential directions was analytically derived by the Rayleigh integral. The analytical derivation and parameters from the experiment were applied to an analysis of noise for the two sets of helical gears with differing gear ratios. The analysis showed that the moment excitation in both helical gears contributed more to the noise of the plate than axial force excitation.

  • PDF

Determination of the Tooth Modification Amounts for Minimizing the Vibration of Helical Gear (헬리컬 치차의 진동최소화를 위한 치면 수정량의 결정)

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.199-205
    • /
    • 2000
  • The vibration and noise of gears is due to the vibration exciting force caused by the tooth stiffness which changes periodically as the mesh of teeth proceeds and by the transmission error, that is, the rotation delay between driving gear and driven gear caused by manufacturing error and alignment error in assembly and so on. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification, end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the mesh analysis of gears. The constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth fillet stress, surface durability and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. And, since the aspect ratio is an important parameter of tooth modification, we investigate the relation between it and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is to be utilized to resolve the problem of vibration of helical gears.

  • PDF

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

Design analysis and simulation of an external helical gear

  • Jinlong Yang;Kwang-Hee Lee;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.45-53
    • /
    • 2023
  • This study optimized the parameters of the helical gear based on the original external meshing helical gear pump, combined with the analysis of the stability and flow of the basic parameters of the equipment; herringbone gears were used to eliminate the axial force generated by the helical gears. An optimized helical gear rotor was built with NX. The error between the simulation and calculation results of pump displacement was 3.95% and the simulation results were valid. Analysis of the outlet pressure and lift changes (maximum change rates of 0.38% and 0.25%), pressure analysis of the XY center plane at different times in the same cycle (no pressure surge or drop), and analysis of the axial force of the primary and driven rotors (axis The axial force is close to 0) were performed. The results showed that the flow pulsation of the external gear pump was slight, the operation was smooth, vibration and friction were reduced, the wear of bearings and other components could be diminished, and the service life of the equipment was extended. The simulation results showed that the external gear pump met the design requirements.

Analysis of Deformation of Automotive Helical Gear in Heat Treatment of Carburized Quenching (차량용 헬리컬기어의 침탄 열처리 변형해석)

  • Bae, Kang-Yul;Yang, Young-Soo;Park, Byung-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.84-91
    • /
    • 2010
  • Heat treatment with carburized quenching process is widely used for automotive helical gear to improve its surface properties of hardness and strength. However, the gear can be deformed with the process over the allowable tolerance, which possibly makes noise, vibration and heat problems in operation. In this study, deformation of helical gear during heat treatment of carburized quenching was analyzed with a numerical method, incorporating coupled calculations of thermal conduction, carbon diffusion, phase transformation and thermal stresses. With the analysis, the effect of coolant temperature in quenching on the deformation was investigated. The result of the analysis revealed that the higher the coolant temperature became, the more change of helix angle and the more compressive stresses in the surface generated, because of delayed generation of martensite in the part.

A Study on Vibration Characteristics by Gear Transmission Error of Vehicle Transmission (자동차용 변속기의 치합전달오차에 의한 진동특성 연구)

  • 배명호;박노길
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.364-373
    • /
    • 2001
  • The gear whine noise of vehicle transmission is directly correlated tilth the gear transmission error of mating gear The object of this study is to build up the synthesized countermeasure for the reduction of gear whine noire of vehicle transmission by developing the program which can be used to analyze and predict the vibrational characteristics caused by gear transmission error of mating gears of vehicle transmission. The developed mathematical models on the elements of transmission, for example, helical gear pairs, bearings and shafts are used and the modeling of the excitation forces are developed by the gear transmission error of mating gear which is defined by the amount of the elastic deformation of gear tooth & shaft and gear profile & lead errors. The mathematical system model of vehicle transmission developed by the substructure synthesis method Is also verified by the experiments.

  • PDF

지형오차와 치형수정을 고려한 헬리컬치차의 물림진동

  • 정태형;명재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.803-806
    • /
    • 1995
  • The vibration and nosic of gears is causeed by manufacting error,alignment error in assembly, and thr meshing stiffness of gears which changes periodically as the meshing of teeth process. On a pair of power transmission helical gears with profile error, the relation between the characteristics of gear vibration and the profile error type have been investigated by simulating the vibrational acceleration level and calculating the natural frequency. The results show that the profile error decrease the natural frequency by reducing the tool stiffness and that the concave error type increase the vibrationsl level. And this paper describes the effect of the tip relief on the vibrational acceleration level which a pair of helical gears with concave error generates.

  • PDF