• 제목/요약/키워드: Height of obstacle

검색결과 109건 처리시간 0.033초

Characteristics of Muscle Activity in the Lower Extremity during Stepping over Various Obstacle

  • Lee, Han-Suk;Hong, Seung-Beom;Chin, Ha-Nul;Choi, Ju-Li;Seon, Hee-Chang;Jeong, Duk-Young
    • 대한물리의학회지
    • /
    • 제14권4호
    • /
    • pp.55-62
    • /
    • 2019
  • PURPOSE: This study examined the muscle activity while stepping over obstacles with various heights and widths to provide basic data for training and preventing falls. METHODS: Fifteen normal young adults (seven males and eight females) were recruited. The participants walked on a 5m walkway with six obstacles. The heights of obstacles were 0%, 10%, and 40% of the subject's leg length, and the width of the obstacles was 7cm and 14cm. The participants traversed the course twice per obstacle. The muscle activities of the soleus, tibialis anterior (TA), vastus medialis (VM), and vastus lateralis (VL) were measured using surface electromyography. A Mann-Whitney test and Kruskal-Wallis test were used to examine the differences between obstacles. RESULTS: The muscle activities of the VL and the soleus of the stance leg and lead leg after crossing over the obstacles increased with increasing width, and there were significant differences in muscle activities between obstacle width (p<.05) except for the muscle activity of TA of the stance leg after crossing over the obstacles. A significant difference in muscle activities was observed according to the height of the obstacles with 14 cm (p<.05) except for the muscle activity of the VL, soleus of the leading leg, and TA of the stance leg CONCLUSION: The role of the VL and Soleus increased with increasing obstacle width, and the overall muscle activities of the lower extremities increased with increasing obstacle height. These results can be used to suggest a program to prevent falls.

신 장애물제한표면에 관한 이론적 고찰과 실증분석 - 인천국제공항을 중심으로 - (A Theoretical Study and Empirical Analysis of New Obstacle Limitation Surface (OLS) - The Case of Incheon International Airport -)

  • 최상일;유수정;곽기열;김현미;김휘양
    • 한국항공운항학회지
    • /
    • 제30권3호
    • /
    • pp.28-37
    • /
    • 2022
  • Obstacle Limitation Surface (OLS) is conceptual surface establishing the airspace around aerodromes to be maintained from obstacles to ensure safe aircraft operations. Despite advances in the technologies for aircraft, navigation systems and the development of new flight procedures, the criteria defining OLS have not been amended since its initial establishment, resulting in the overestimation of areas for height restriction. As there were requests to examine OLS at the 12th Air Navigation Conference and the 38th ICAO Assembly, the research on the OLS revision began in earnest and ICAO has proposed Obstacle Free Surface (OFS) and Obstacle Evaluation Surface (OES) as an alternative of the existing OLS. OFS is surfaces where obstacles shall not be permitted, and OES is ones where obstacles be evaluated with an aeronautical study and could be permitted under some conditions. The purpose of this study is to preemptively assess the efficiency and safety of OFS and OES by applying them to the second runway (15L/33R) of Incheon International Airport. The results show that OFS and OES are capable of serving the instrument flight procedure safely with a smaller obstacle clearance area compared to the existing OLS.

주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계 (Design of a Cross-obstacle Neural Network Controller using Running Error Calibration)

  • 임신택;유성구;김태영;김영철;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.463-468
    • /
    • 2010
  • An obstacle avoidance method for a mobile robot is proposed in this paper. Our research was focused on the obstacles that can be found indoors since a robot is usually used within a building. It is necessary that the robot maintain the desired direction after successfully avoiding the obstacles to achieve a good autonomous navigation performance for the specified project mission. Sensors such as laser, ultrasound, and PSD (Position Sensitive Detector) can be used to detect and analyze the obstacles. A PSD sensor was used to detect and measure the height and width of the obstacles on the floor. The PSD sensor was carefully calibrated before measuring the obstacles to achieve better accuracy. Data obtained from the repeated experiments were used to plot an error graph which was fitted to a polynomial curve. The polynomial equation was used to navigate the robot. We also obtained a direction-error model of the robot after avoiding the obstacles. The prototypes for the obstacle and direction-error were modeled using a neural network whose inputs are the obstacle height, robot speed, direction of the wheels, and the error in direction. A mobile robot operated by a notebook computer was setup and the proposed algorithm was used to navigate the robot and avoid the obstacles. The results showed that our algorithm performed very well during the experiments.

독립보행이 가능한 강직성 뇌성마비 아동들의 수직 및 수평 장애물 통과에 영향을 미치는 요인 분석 (An Analysis of Factors Affecting Vertical and Horizontal Obstacle Crossing in Independently Ambulatory Children With Spastic Cerebral Palsy)

  • 이수진;오덕원
    • 한국전문물리치료학회지
    • /
    • 제18권3호
    • /
    • pp.16-25
    • /
    • 2011
  • This study aimed to evaluate factors related to the ability of ambulatory patients with cerebral palsy (CP) to walk over vertical and horizontal obstacles. Twenty patients with spastic CP who were able to walk independently for at least 10 m with or without walking devices were recruited for the study. Participants were required to walk over small obstacles (1, 4, and 8 cm in height or width; total of 6 conditions). A 'fail' was recorded when either the lower limbs or the walking device contacted the obstacle. Linear regression analyses were used to determine the effects of age, sex, walking devices, eyeglasses, subtype (hemiplegia or diplegia), ankle foot orthoses, functional level, and score of body mass index on the ability of obstacle crossing. Fifteen participants (75%) failed to adequately clear the foot or walking device over obstacles in at least 1 condition. The chance of failure in crossing vertical obstacle was affected by the use of ankle foot orthoses, eyeglasses, gender, and CP subtype (p<.05). The failure rate crossing horizontal obstacle was affected by CP subtype. These findings suggest that rehabilitation procedures should (1) consider the clinical characteristics of patients in order to prepare them to be more independent while performing daily activities, and (2) incorporate environmental conditions that patients encounter at home and in the community.

Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사 (Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model)

  • 고상철;박남섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

  • Eom, We-Sub;Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.381-387
    • /
    • 2012
  • The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name) that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension system. Also, based on the height of the obstacle, a simulation was carried out for the negative moment of the suspension system before the excellence of the suspension system suggested through the comparison of responding characteristics was proved.

동력경운기(動力耕耘機)-트레일러 시스템의 운동(運動) 및 전도(轉倒) 시뮬레이션 (Simulation of Motion and Overturns for Power Tiller-Trailer System)

  • 박금주;박우룡
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.27-36
    • /
    • 1992
  • Computer simulation was carried out to predict the motion and overturns of power tiller-trailer system this system when traveing over an obstacle on inclined planes. To estimate the effects of design factors (mass center of main body and wheel base), ground factors (ground inclination and height of obstacle), and operation factors (traveling velocity) on the sideways overturn, the motion of power tiller-trailer system was simulated as the factors were varied with five different levels.

  • PDF

Wind flow over sinusoidal hilly obstacles located in a uniform flow

  • Lee, Sang-Joon;Lim, Hee-Chang;Park, Ki-Chul
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.515-526
    • /
    • 2002
  • The wind flow over two-dimensional sinusoidal hilly obstacles with slope (the ratio of height to half width) of 0.5 has been investigated experimentally and numerically. Experiments for single and double sinusoidal hill models were carried out in a subsonic wind tunnel. The mean velocity profiles, turbulence statistics, and surface pressure distributions were measured at the Reynolds number based on the obstacle height(h=40 mm) of $2.6{\times}10^4$. The reattachment points behind the obstacles were determined using the oil-ink dot and tuft methods. The smoke-wire method was employed to visualize the flow structure qualitatively. The finite-volume-method and the SIMPLE-C algorithm with an orthogonal body-fitted grid were used for numerical simulation. Comparison of mean velocity profiles between the experiments and the numerical simulation shows a good agreement except for the separation region, however, the surface pressure data show almost similar distributions.

산지 지형에서의 오염물질 확산에 관한 가시화 연구 (Visualization of Pollutant Dispersion over Hilly Terrain)

  • 길태호;이정묵;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2003
  • The wind flow and pollutant dispersion over a two-dimensional sinusoidal hilly obstacle with slope (the ratio of height to half width) of 0.7 have been investigated experimentally and numerically. Flow over a single sinusoidal hill model was visualized in a subsonic wind tunnel. The mean velocity profiles, turbulence statistics, and pollutant concentration distribution were measured at the Reynolds number based on the obstacle height (H=40mm) oft $2.6\times10^4$. Experimental results for flow over a flat ground were agreed with the theoretical and numerical results. When a pollutant source is located behind the hilly terrain, the pollutant dispersion appeared even in the upstream region due to recirculation flow.

  • PDF

대기환경모형에 대한 지형성 난류의 의존성에 관한 연구 (A study on the Responsibility of the Atmospheric Numerical Model on Turbulence induced by Orography)

  • 이순환;이화운;김유근
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.653-660
    • /
    • 1999
  • The flow of non-rotation atmosphere with uniform stratification and wind past an isolated three dimensional topography obstacle is investigated with three-dimensional hydrostatic and non- hydrostatic numerical model. The characteristic of turbulence created the back of topography obstacle is usually defined by Froude number which is the function of upstream wind speed, the height of topography obstacle, and atmospheric stability. Turbulence tends to be formed more easily at the non-hydrostatic model than hydrostatic model. Especially, the difference between flow patterns of two models generated by isolated obstacle is more clear under low Froude number. The difference of flow patterns can be only seen at relatively low altitude, but at high altitude the patterns of two models are almost same. In this research, wind velocity in the parameters related with Froude number have great sensitivity at responsibility of numerical models. and slop of obstacle is also important factor at the flow pattern regardless of the species of numerical model

  • PDF