• Title/Summary/Keyword: Height of embankment

Search Result 120, Processing Time 0.022 seconds

Analysis of post-construction deformation characteristics of concrete faced rockfill dams

  • Kim, You-Seong;Won, Myoung-Soo;Song, Young-Chul;Yoon, Deok-Joong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.528-541
    • /
    • 2007
  • To get the possible for management and maintenance, it was analyzed the deformation characteristics, such as crest of embankment and concrete face slab, and leakage of concrete faced rockfill dams (CFRD). There are trends that embankment deformation depends on intact strength used rockfills rather than dam height, deformation normal to concrete face slab during the first reservoir filling is occurred more than 80% of the total deformation in general, and the magnitude and trend of concrete face slab deformation is similar to post-construction crest settlement. The results showed that the range of post-construction crest settlement suggested by Sherard and Cooke (1987), and Clements (1984) had a good agreement in the cases using rockfill with very high intact strength, but it had a trend which underestimated crest settlement in the cases using rockfill with medium to high intact strength. The maximum leakage rate in general was observed during the first reservoir filling and long-term leakage rate was rapidly increased when the dam height exceeds approximately 120m.

  • PDF

Wave Propagation on a High-speed Railway Embankment Using a Pile-slab Structure (파일슬래브구조가 적용된 고속철도 토공노반에서의 진동 전파)

  • Lee, Il Wha;Lee, Sung Jin;Lee, Su Hyung;Lee, Kang Myung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.278-285
    • /
    • 2013
  • The suppression of residual settlement is required on earthwork sections as concrete track is introduced. Use of pile-slab structure is one of the settlement restraining methods applied on soft ground. The slab distributes the upper embankment load and piles transfer the load from the slab to the stiff ground. While this method is very effective in terms of load transfer, it has not yet been established for dealing with the vibration transfer effects and interaction characteristics between a structure and the ground. It is possible that vibration caused by a moving train load is propagated in the upper embankment, because the slab acts as a reflection layer and waves are multi-reflected. In this present paper, wave propagation generated by a moving train load is evaluated in the time and frequency domains to consider a roadbed structure using an artificial impact load and field measured train load. The results confirmed the wave reflection effect on the pile-slab structure, if the embankment height is sufficient, vibration propagation can be stably restrained, whereas if the height is not sufficient, the vibration amplitude is increased.

Analysis for the Safety Factor of Slope and Seepage according to Change Cross-Section in the Reservoir Embankments (저수지 제체 단면 형상 변화에 따른 안전율 및 침투유량 분석)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.37-46
    • /
    • 2013
  • Many factors about the stability for the reservoir embankments is determined when the facility is completed. Therefore the initial design of the embankment is important. Many researchers focused the effect of soil parameters although the cross section greatly affects the stability and can be controlled in design step. The objective of this research is to analysis of the effects for the safety factor of slope and seepage according to change cross-section in embankment. As a result, the quantity of seepage decreased as the gradient of downstream slope decreased and was proportional to the height of embankments. There was a linear relationship between the gradient of slope and the safety factor of slope. However the gradient of slope did not affect other side slope. All in a relationship, regressive equations with a high correlation coefficient were calculated and can be applied the simple estimation method of the stability using the cross-section. As results of analyzing the sensitivity, the friction angle and permeability critically effect for the slope stability and the seepage, respectively. The effect of the slope gradient was similar to major soil properties.

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.469-484
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

Hydrodynamic Behavior Analysis of Stacked Geotextile Tube by Hydraulic Model Tests (수리모형시험을 통한 다단식 지오텍스타일 튜브의 수리동역학적 거동분석)

  • 신은철;오영인;김성윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.705-712
    • /
    • 2002
  • Geotextile tube is environmentally sustainable technology and has been applied in hydraulic and coastal engineering applications. Geotextile tube is composed in permeable fabrics and Inside dredged materials, and hydraulically or mechanically filled with dredged materials. These tube are generally about 1.0m to 2.0m in diameter, through they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will create by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. This paper presents the hydrodynamic behavior of stacked geotextile tube by hydraulic model tests. The hydraulic model test conducted by structural condition and wave conditions. Structural condition is installation direction to the wave(perpendicular band 45$^{\circ}$), and wave condition is varied with the significant wave height ranging from 3.0m to 6.0m. Based on the test results, the hydrodynamic behaviors such as structural stability, wave control capacity, and strain are interpreted.

  • PDF

Modeling of the Formation of Long Grooves in the Seabed by Grounded Ice Keels

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.1-15
    • /
    • 2003
  • The motion of passively floating body, whose keel can have a contact with seabed soil, is under the consideration. The body simulates ice ridge floating in shallow water. The force of seabed soil reaction applied to the grounded keel is estimated taking into account soil embankment near the grounded keel. Two-dimensional trajectories of body motion, the shape of the grooves in seabed and the height of soil embankment are calculated when the motion of the body is caused by semidiurnal $M_2$ tide. The influence of wave amplitude and bottom slope on the shapes of body trajectory and the grooves are analyzed.

Behavior Analysis of the Saemangum Waterproof Embankment Applying Geotextile Tube Method and Example of Field Test - In Concentration of Reviewing the Construction and Design Process - (지오텍스타일 튜브공법을 적용한 새만금방수제의 거동분석 및 시험시공 사례 - 설계과정 및 시공성 검토 중심으로 -)

  • Park, Jong Gun;Ko, Jeong Hee;Park, Tae Seup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • Recently, geotextile tube method can be widely applied to the river, costal and marine in the construction field, such as embankment, groin, breakwater, dyke structures and so on, in advanced countries of the world. And that has been constructed at the temporary road for incheon, ilsan-bridge construction and coast erosion protection in republic of korea. Geotextile tube is a tube shaped geotextile product and hydraulic pumping filled with dredged soils. In this paper, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of material character, shape condition, construction pressure and so on. Also, the field test was conducted in order to identify the construction ability of Samangum waterproof embankment using geotextile tube. According to the applied of field test, geotextile tube was 65 m long and 4.0 m diameter. Also, the permeability coefficient and ultimate tensile strength of geotextile tube is $1.6{\times}10^{-1}$ cm/sec and 205.26 kN/m, respectively. As a result of filed test, when filled, geotextile tube does not attain the same as its unfilled theoretical diameter, but may reach approximately of 55 percent of the theoretical diameter. At the time, geotextile tubes were 12.56 m in circumference and filled to a height of about 2.2 m. This paper presents case study on field application and behavior analysis of the saemangum waterproof embankment donggin 1 division construction using geotextile tube.

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

A Study on Lateral Flow in Soft Grounds under Embankments for Road Constructions (도로 성토로 인한 연약지반의 측방유동에 관한 연구)

  • Kim, Junghoon;Hong, Wonpyo;Lee, Choongmin;Lee, Junwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.17-29
    • /
    • 2012
  • To investigate the characteristics of shear strength and soil deformation in soft grounds, in which various vertical drains were placed, two hundreds field monitoring data of embankments performed in thirteen road construction sites at west and south coastal areas of the Korean Peninsula were collected. At first, the relationship between settlement and lateral displacement was investigated into three stages, in which embankment construction works were divided into initial filling stage, final filling stage and stage after complete filling. And then, the relationship of surcharge pressures and embankment heights with undrained shear strength of soft grounds were investigated. The investigation on settlement and lateral displacement illustrated that the increment of lateral flow to the increment of settlement was low during initial filling stage, but increased gradually with filling and showed largest during final filling stage. After complete filling, the lateral displacement was converged, even though the settlement was increased continuously. Therefore, most of lateral flow was occurred during embankment filling. The ratio of the lateral displacement increment to the settlement increment was 20% for initial filling stage, which coincided with the one presented by Tavenas et al.(1979), but became 50% for final filling stage, which was half of the one presented by Tavenas et al.(1979). However, the ratio reduced to 1% to 9%, which was quite lower than the one presented by Tavenas et al.(1979). Shear deformations, even shear failures, were predicted in soft grounds under initial undrained shear strength, since the design heights of embankments were higher than the yield height in all the sites. However, embankment construction would be possible since the yield height became higher than the design height due to improvement of shear strength of soft grounds with application of the vertical drains. In order to perform safely embankments for road constructions, the embankment loads should be designed not to be exceed 5.14 times the initial undrained shear strength of soft grounds and to be less than 3.0 times the undrained shear strength improved with application of vertical drains in soft grounds.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.