• Title/Summary/Keyword: Heel off

검색결과 67건 처리시간 0.027초

An Empirical Study for the Safe and Effective Operations in Membrane LNG Ships focused on the Tank Cool Down

  • Gim, S.G.;Kim, S.W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.566-572
    • /
    • 2005
  • The most crucial factor in membrane LNG ships to ensure sage operations, is how to effectively control tank pressure at the time of excessive generation of boil off gas (BOG). When the ships carry out tank cool down with her retaining heel prior to arrival at loading port, the vessel encounters the critical situation of excessive BOG and high tank pressure that can lead to high degree of risk. This is to provide one of the best ways to secure safe and effective LNG ship operations focusing on the detailed methods of tank cool down to achieve ATR(Arrival Temperature requirement) without building up high tank pressure and excessive BOG and calculating the appropriate heel quantity to be unutilized for tank cool down and fuel during ballast voyage.

  • PDF

근전도 신호를 이용한 보행 패턴 분류 (Gait Pattern Classification using EMG Signal)

  • 지연주;송신우;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.115-115
    • /
    • 2000
  • A gait pattern classification method using electromyography(EMG) signal is presented. The gait pattern with four stages such as stance, heel-off, swing and heel-strike is analyzed and classified using feature parameters such as zero-crossing, integral absolute value and variance of the EMG signal. The EMG signal from Tibialis Anterior and Gastrocnemius muscles was obtained using the surface electrodes, and low-pass filtered at 10kHz. The filtered analog signal was sampled at every 0.5msec and converted to digital signal with 12-bit resolution. The obtained data is analyzed and classified in terms of feature parameters. Analysis results are given to show that the gait patterns classified by the proposed method are feasible.

  • PDF

임산부 보행의 역학적 분석 (Biomechanical Analysis of gait after seven month pregnant)

  • 금명숙;유실;김영란;정남주;한윤수;이훈표;윤희중
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.15-30
    • /
    • 2002
  • The purpose of this study was analyzed the effect of kinematical and kinetical factors of lower extremity of form change in the cause of growth an unborn child during in pregnancy. Three pregnant women were selected from pregnant 24 weeks as subjects. Each subjects were required to walk with usual walking speed. Cinematographic and GRF data were collected during walking, and the kinematical and kinetical variables were calculated using Kwon3d. Based on the results of the study, the following conclusions were drawn : 1. Step width and Step length The change of form during the period of pregnancy was not statistically found significant in the step width and the step length. 2. Angle of lower extremity 1) The change of form during the period of pregnancy was not statistically found significant in the hip angle at right heel contact, mid stance, but it was statistically found significant in the hip angle at toe off on p<.05. 2) The change of form during the period of pregnancy was not statistically found significant in the knee angle at right heel contact, mid stance, but it was statistically found significant in the knee angle at toe off on p<.05. 3) The change of form during the period of pregnancy was not statistically found significant in the ankle angle at right heel contact, mid stance, but it was statistically found significant in the ankle angle at toe off on p<.05. 3. Ground reaction force 1) The change of form during the period of pregnancy was statistically found significant in medial-lateral force(Fx) on p<.001. 2) The change of form during the period of pregnancy was not statistically found significant in post-anterior force(Fy). 3) The change of form during the period of pregnancy was statistically found significant in impulse force and minimum peak of vertical reaction force on p<.001, p<.01 but it was not statistically found significant in second maximum force.

마비 환자를 위한 능동형 달하지 보조기의 개발 (Development of an Active Controlled Ankle-Foot-Orthosis for Paralysis Patients)

  • 황성재;김정윤;김영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.193-195
    • /
    • 2006
  • In this study, we developed an active controlled ankle-foot orthosis(AAFO) which can control the dorsiflexion/plantarflexion of the ankle joint during gait to prevent foot drop and toe drag for paralysis patients. To prevent dropping foot after heel strike, ankle joint was actively controlled to minimize forefoot collision with the ground. It was also controlled to provide toe clearance and to help push-off during late stance. The 3D gait analysis was performed on two healthy subjects equipped with the developed AAFO to compare with the normal gait and the conventional AFO gait. In the developed AAFO gait, differently from the conventional AFO gait, significant push-off was observed during pre-swing and the maximum flexion moment during pre-swing phase was similar to that of normal gait. A remarkable dorsiflexion also occurred during initial swing. These results indicated that the developed AAFO could have certain clinical benefits to prevent foot drop for paralysis patients, compared to conventional AFOs.

  • PDF

지간 신경종 발생 위치와 심부 횡 중족 골간 인대의 해부학적 연구 (Anatomical Study of Interdigital Neuroma Occurring Site and the Deep Transverse Metatarsal Ligament (DTML))

  • 김재영;최재혁;이경태;양기원;박정민
    • 대한족부족관절학회지
    • /
    • 제11권2호
    • /
    • pp.182-186
    • /
    • 2007
  • Purpose: We examined the relationship of interdigital neuroma occurring site and the surrounding structures, including the deep transverse metatarsal ligament (DTML) by cadaver study and clinical results. Materials and Methods: Seventeen fresh frozen cadavers study were done to evaluate the relationship of interdigital neuroma occuring site and the DTML at two phase of the gait cycle with 60 degree of metatarsophalangeal dorsiflexion and with 15 degrees of ankle dorsiflexion. We measured the distance from interdigital nerve bifurcation of the common digital nerve to anterior margin of the DTML and longitudinal length of DTML itself. Clinically, we checked the location of interdigital neuroma and DTML length during surgery in 32 feet. Results: In the second and third web space, the mean distance from bifurcation of the common digital nerve of foot to the anterior margin of DTML was 16.7 mm, 15.1 mm in the mid-stance position, and 15.9 mm. 14.6 mm in heel-off position. Second, Third web space ligament itself length were average 12.8 mm, 10.6 mm. Clinically, all of the cases of interdigital neuroma started at the bifurcation area of the common digital nerve and interdigital neuroma was average 7.5 mm (range; 6-11 mm). Conclusion: Interdigital neuroma were located more distally than DTML in both the mid-stance and heel off stage. The main lesion was located between metatarsal head and metatarsophalangeal joint and more distal than the DTML anterior margin.

  • PDF

Analysis of Lower-Limb Motion during Walking on Various Types of Terrain in Daily Life

  • Kim, Myeongkyu;Lee, Donghun
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.319-341
    • /
    • 2016
  • Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.

Gait Stability in K-pop Professional Dancers

  • Jang, Young Kwan;Hong, Su Yeon;Jang, Inyoung
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.377-382
    • /
    • 2016
  • Objective: The purpose of this study was to provide data on gait characteristics of K-pop professional dancers. Method: Participants were divided into four groups: male dancers (n=10, age: $28.2{\pm}3.4years$, height: $175{\pm}6cm$, weight: $68.9{\pm}5.6kg$), female dancers (n=10, age: $26.7{\pm}3.1years$, height: $162{\pm}4cm$, weight: $52.1{\pm}3.7kg$), non-dancer males (n=10, age: $25.2{\pm}2.6years$, height: $171{\pm}6cm$, weight: $66.4{\pm}5.3kg$), or non-dancer females (n=10, age: $26.2{\pm}3.0years$, height: $161{\pm}5cm$, weight: $56.4{\pm}6.7kg$). Twelve infrared cameras (Qualisys, Oqus 500, Sweden, 150 Hz.) were used to capture three-dimensional motion data. Gait motion data of professional dancers and ordinary persons were obtained. Results: K-pop dancers' dynamic stability during the female toe off event and the male heel contact event was better compared with that of ordinary persons in the front-rear direction. In addition, the results showed a significant difference in the margin of stability (MoS). However, the medial-lateral direction of both female and male dancers during heel contact and the toe off event was more stable compared with ordinary person, who exhibited an increased MoS than did the dancers. Conclusion: This study aimed to investigate the gait characteristics of K-pop professional dancers in comparison with ordinary persons using gait parameters and MoS. The stability of K-pop professional dancers' dynamic gait in the front-rear direction was better than that in the medial-lateral direction. Therefore, further studies in which the dance movements of K-pop dancers are sub-divided and analyzed will be necessary to reduce related injury.

12주간의 불안정성 신발 착용이 직립 자세 및 보행역학에 미치는 영향 (Effects of 12-week Wearing of the Unstable Shoes on the Standing Posture and Gait Mechanics)

  • 박기란;안송이;이기광
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.165-172
    • /
    • 2006
  • The purpose of this study was to determine effects of 12-week wearing of unstable shoe on the standing posture and gait mechanics. Nine healthy men were asked to wear the unstable shoes for 12-week and walk for 30 minute everyday. Their standing posture and gait mechanics were measured before and after treatment. Standing posture was measured for each side(anterior, posterior, lateral) for standing position. And gait analysis was measured joint angle of a right lower limb between first right heel contact and second right heel contact. Kinematic data were collected using video camera at 30 frame per seconds. Statistical analysis was paired t-test(p<.05) to compare before training with after that. A head tilt angle was significantly decreased for posterior side(p<.05). The angle of between center of line and surface was significantly decreased at midstance and take off during walking(p<.05). Ankle dorsiflexion significantly increased at heel contact2(p<.05) and ankle plantarflexion significantly increased at midstance and midswing(p<.05). The increase of ankle dorsiflexion showed that our results consisted with previous study. In conclusion, there was not large significant difference in static standing posture but joint angle of lower limb represented many changes with increasing of ankle motion during walking. These were of benefit to body by increasing leg muscle activity but it was necessary for man having a ankle problem to consider. Further studies concerning optimum outsole angle of unstable shoes are necessary.

편마비 환자의 신발 높이 조절이 동적체중부하율에 미치는 영향 (The Effect of Shoe Lift of the Paretic Limb on Dynamic Weight Bearing in Hemiplegics)

  • 윤정규;김병욱
    • 대한물리치료과학회지
    • /
    • 제8권2호
    • /
    • pp.1073-1080
    • /
    • 2001
  • The purpose of this study was to determine the effect of lift to the shoe of the affected limb on gait patterns in subjects with hemiplegia. The subjects of this study were 18 post-stroke hemiplegics. For the study, insole of the paretic side was lifted 10 mm higher, and duration of dynamic weight bearing was measured. before and after the lift application. For the measurement of carry-over effect of lift, we got data of there three items prior to and 3 weeks after lift application and 3 days after removal of the lift. Dynamic weight bearing was significantly decreased in heel contact and footflat phases only when just after application of the lift, without any change after 3 weeks application. In heel-off phase, dynamic weight bearing did not show any significant difference between before and just after application of lift whereas significantly decreased after 3 weeks application. According to this study, lift applied to the shoe of the paretic limb was not significantly effect in inducing dynamic weight bearing, but changed a dynamic weight bearing.

  • PDF

저항센서와자이로센서를이용한새로운보행주기검출시스템의개발및평가 (Development and Evaluation of a New Gait Phase Detection System using FSR Sensors and a Gyrosensor)

  • 안승찬;황성재;강성재;김영호
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.196-203
    • /
    • 2004
  • In this study, a new gait phase detection system using both FSR(Force Sensing Resister) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the posterior aspect of a shoe. An algorithm was also developed to determine eight different gait transitions among four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was compared with the conventional gait phase detection system using only FSR sensors in various gait experiments such as level walking, fore-foot walking and stair walking. In fore-foot walking and stair walking, the developed system showed much better accuracy and reliability to detect gait phases. The developed gait phase detection system using both FSR sensors and a gyrosensor will be helpful not only to determine pathological gait phases but to apply prosthetics, orthotics and functional electrical stimulation to patients with gait disorders.