• Title/Summary/Keyword: Heavy water

Search Result 2,665, Processing Time 0.026 seconds

Effect of Rotary Drum on the Speciation of Heavy Metals during Water Hyacinth Composting

  • Singh, Jiwan;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • Studies were carried out on the speciation of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during rotary drum composting of water hyacinth (Eichhornia crassipes) for a period of 20 days. Five different proportions of cattle manure, water hyacinth and sawdust were prepared for composting. This study concluded that, rotary drum was very efficient for the degradation of organic matter as well as for the reduction of mobility and bioavailability of heavy metals during water hyacinth composting. The results from the sequential extraction procedure of heavy metals shows that rotary drum composting changed the distribution of five fractions of Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr. The highest reduction in the bioavailability factors of Pb and Cd was observed during the process. The total concentration of Cu, Cr, and Cd was very low compared to the other metals (Zn, Mn, Fe, Ni, and Pb); however, the percentage of exchangeable and carbonate fractions of these metals was similar to other metals. These results confirmed that the bioavailability of metals does not depend on the total concentration of metals. From this study, it can be concluded that the addition of an appropriate proportion of cattle manure significantly reduced the mobile and easily available fractions (exchangeable and carbonate fractions) during water hyacinth composting in rotary drum.

Forward Osmosis Technology for Concentrating the Heavy Water (중수 농축을 위한 정삼투 기술)

  • Chul Ho Park;Seong Bae Cho;Ook Choi
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.70-76
    • /
    • 2023
  • Heavy water (D2O) can induce various biochemical changes in comparison with light water (H2O). In order to reduce excessive energy consumption, which is a disadvantage of the existing separation process, we conduct the forward osmosis with electrospun polyamide membranes. NaCl and phosphoric acid were used as draw solutions. FT-IR spectroscopy was used to quantify the concentration of heavy water. It was observed that phosphoric acid could concentrate heavy water through a forward osmosis process and its special interaction with hydrogen/deuterium (H/D) was spectrophotometrically confirmed.

Statistical Thermodynamical Properties and Adsorption Characteristics of Heavy Water (중수의 열역학적 성질과 흡착특성)

  • Chang-Hyun Jho;Hyungsuk Park;Seihun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.285-293
    • /
    • 1971
  • The statistical thermodynamical properties of heavy water are calculated according to the transient state theory of significant liquid structure. The calculated values are shown to be in good agreement with the observed ones. The grand canonical ensemble partition function for the adsorbed phase of heavy water on graphite surface is derived using the theory. The adsorption isotherm, the surface pressure, the molar entropy and the molar internal energy for the adsorbed phase and then the molar heat of adsorption are calculated according to the derived partition function. The thermodynamic properties of the adsorbed water are also calculated and the results are compared with those of heavy water and discussed in view of the experimentally observed phenomena.

  • PDF

Effects of Habitat Changes Caused by Localized Heavy Rain on the Distribution of Benthic Macroinvertebrates (집중호우에 의한 서식지변동이 저서성 대형무척추동물의 분포에 미치는 영향)

  • Kim, Hyoung-Gon;Yoon, Chun-Sik;Cheong, Seon-Woo
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.689-699
    • /
    • 2018
  • The changes on community structures of benthic macroinvertebrates, relevance to the environment and interrelationship between benthos were studied over two years in stream with large environmental disturbance, which caused by localized heavy rain during Typhoon Chaba in October 2016. As a result, the number of species and individuals were increased after localized heavy rain, especially numbers of individuals of Ephemeroptera and Plecoptera were greatly increased. On the contrary, those of Semisulcospira libertina and Semisulcospira forticosta of Mesogastropoda were greatly decreased. Dominant species was Baetis fuscatus of Ephemeroptera, numbers of species and individuals of Ephemeroptera, Plecoptera and Trichoptera(EPT group) were dramatically increased from 26 species, 110 individuals to 32 species, 365 individuals respectively. This suggests that the change of river bed and flow velocity due to heavy rain provided a suitable environment for the EPT group that preferred the rift of a stream. In the functional feeding group, only gathering collectors and filtering collectors were identified in autumn of 2017 because some functional groups preferentially adapted to the changed environment. The interspecific competition and environmental condition were the worst in autumn after heavy rain due to the increase individuals of some species. The ecological score of benthic macroinvertebrate community(ESB) was higher after the heavy rain than before. Results of the Group Pollution Index(GPI), Korean Saprobic Index(KSI) and Benthic Macroinvertebrate Index(BMI) were similar to those before and after heavy rainfall. Therefore, ESB was the most discriminating method for estimating the biological water quality in this study. Some species that are sensitive to water quality changes still appear or increase individuals in the area under investigation after the heavy rain. On the other hand, the individuals of some pollutant species decreased. This is thought to be because the habitat fluctuation caused by heavy rainfall has improved the water environment.

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

Heavy Metal Contents In Tissues of Carassius auratus In Andong and Imha Reservoir (안동.임하호에 서식하는 붕어(Carassius auratus) 조직 내 중금속 함량)

  • Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1562-1567
    • /
    • 2009
  • Heavy metal contamination levels in Andong reservoir and Imha reservoir were measured with heavy metal contents in both water and sediment, and analyzed with heavy metal accumulation level in inhabitant fish, Carassius auratus, using an inductively coupled plasma spectrometer and an atomic absorption spectrometer. High levels of heavy metal contents in water, sediment and the tissues of C. auratus were detected. Likewise, relatively high levels of As were detected in water and sediment from Andong reservoir. In addition, higher levels of Cr, Cu, Cd and As content were detected in muscle and bone tissues of fish from Andong reservoir than those from Imha reservoir. As a result, the heavy metal content of water, sediment and inhabitant fish, C. auratus, in Andong reservoir was higher than Imha reservoir. We proposed that heavy metal contamination in water and inhabitant fish is attributed to various metals derived from abandoned mines and farmlands that are upstream of Andong reservoir.

Effect of Water Hardness on Toxicity of Cadmium and Zinc (수계 내 경도가 Cd와 Zn 독성에 미치는 영향)

  • Yoon, Sung Ho;Ha, Hong Joo;Lee, Sung Jong;Jho, Eun Hea
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.556-562
    • /
    • 2017
  • Heavy metals in water systems are being managed on the concentration-based guidelines in Korea. However, various chemicals present in water can interact with heavy metals affecting their toxicity. Such interactions are not considered in the concentration-based guidelines. This study investigated the effect of hardness and coexisting heavy metals on heavy metal toxicity to emphasize the importance of having the effect-based guidelines together with the concentration-based guidelines in water management. The toxic effects of Cd, Zn, or mixtures of Cd and Zn were studied with Daphnia magna as a test species following the standard test method at different hardness conditions (100, 200, and $300mg\;L^{-1}$ as $CaCO_3$). The toxicities of single metal solutions and mixtures showed a decreasing trend with increasing hardness, and this can be attributed to the competition between heavy metals and cations such as calcium ions ($Ca^{2+}$) that cause hardness. The predicted toxicities of the heavy metal mixtures from the single metal toxicity deviated from the measured toxicities, and the predicted toxic effects tend to be greater than the measured toxic effects suggesting that Cd and Zn are in competition. This shows the limitations of using predicted toxic effects and the needs for further studies on mixture toxicities. Overall, this study shows that the management of heavy metals in waters needs to employ the effect-based guidelines together with the concentration-based guidelines.

A Study on the development of a heavy rainfall risk impact evaluation matrix (호우위험영향평가 매트릭스 개발에 관한 연구)

  • Jung, Seung Kwon;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • In this study, we developed a heavy rainfall risk impact matrix, which can be used to evaluate the influence of heavy rainfall risk, and propose a method to evaluate the impact of heavy rainfall risk. We evaluated the heavy rainfall risk impact for each receptor (Residential, Transport, Utility) on Sadang-dong using the heavy rainfall event on July 27, 2011. For this purpose, the potential risk impact was calculated by combining the impact level and the rainfall depth based on the grid. Heavy Rainfall Risk Impact was calculated by combining with Likelihood to predict the heavy rainfall impact, and the degree of heavy rainfall in the Sadang-dong area was analyzed and presented based on grid.

Is Liquid Water a Hot Quantum Fluid? Anomalies of Water in Thin Liquid Films and in Biological Systems

  • Yoon, Byoung-Jip
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1211-1214
    • /
    • 2003
  • The anomalies that appear at every multiple of 15 ℃ in the viscosity of a thin liquid film of water and of water near solid interfaces are explained in this paper by comparing the thermal wavelength and molecular free volume of water, and quantum numbers are found. The possibility that these anomalies are related to the preferred and/or lethal temperatures of organisms is considered. The toxicity of heavy water (D₂O) can also be explained with this approach.

Adsorption of Heavy Metal Ions by Constituents of Bark (수피조성분에 의한 중금속 흡착)

  • Paik, Ki-Hyon;Choi, In-Gyu;Shin, Keum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.51-56
    • /
    • 1996
  • The Bark lignin(alkali- and acid lignin), bark extractives(hot water-and $Na_2SO_3$ extractives) of Quercus acutissima and Pinus densiflora, and flavonoids were used to detect heavy metal adsorption. The adsorption ratio of heavy metals by lignin was assigned for 40 to 50%, but was not dependent on lignin kinds. However, in case of the addition of light metals such as $Ca^{++}$ and $Mg^{++}$ to lignin the adsorption ratio was increased by 20 to 40%, and $Pb^{++}$ was almost completely adsorbed. On hot water extractives, the adsorption ratio was very low because the substrate was water-soluble, so the substrate should be water-insoluble to adsorb the heavy metals. However, the adsorption ratios of $Cd^{++}$ and $Pb^{++}$ on $Na_2SO_3$ extractives were significantly increased, while those of $Zn^{++}$ and $Cu^{++}$, were similar to lignin. When four kinds of heavy metals were treated to $Na_2SO_3$ extractives together, more than 97% of $Pb^{++}$ and $Cu^{++}$ was adsorbed_ and $Zn^{++}$ was more adsorbed by 40%, and $Cd^{++}$ was not changed, comparing with the case that on kind of heavy metal was treated. There were differences between adsorption ratio of the kinds of flavonoids and heavy metals, and the adsorption ratio of heavy metals was assigned to 20 to 45% per 0.1g flavonoid.

  • PDF