• Title/Summary/Keyword: Heavy metals contamination

Search Result 472, Processing Time 0.033 seconds

Iron Containing Superoxide Dismutase of Streptomyces subrutilus P5 Increases Bacterial Heavy Metal Resistance by Sequestration (Streptomyces subrutilus P5의 철 함유 Superoxide Dismutase의 중금속 격리에 의한 세균의 중금속 저항성 증가)

  • Kim, Jae-Heon;Han, Kwang Yong;Jung, Ho Jin;Lee, Jungnam
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Mitigation of heavy metal toxicity by iron containing superoxide dismutase (FeSOD) of Streptomyces subrutilus P5 was investigated. For E. coli $DH5{\alpha}$, the survival rate in the presence of 0.1 mM lead ions was only 7% after 120 min; however, with the addition of $0.1{\mu}M$ of purified native FeSOD the survival rate increased to 39%. This detoxification effect was also shown with 0.01 mM copper ions (survival increased from 6% to 50%), and the effect was stronger than with the use of EDTA. E. coli M15[pREP4] producing 6xHis-tagged FeSOD was constructed, and this showed an increase in survival rates throughout the incubation time; in the presence of 0.1 mM lead ions,the final increase at 60 min was from 3% to 19%. The FeSOD absorbed about 123 g-atom lead per subunit; therefore, we suggest that FeSOD could sequestrate toxic heavy metals to enhance bacterial survival against heavy metal contamination.

Heavy Metal Contamination of Feral Pigeons Columba livia by Habitat in Seoul (서울지역 집비둘기 Columba livia의 서식지별 중금속 오염)

  • Kim, Jeong-Su;Han, Sang-Hui;Lee, Du-Pyo;Gu, Tae-Hoe
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.303-307
    • /
    • 2001
  • Some Feral Pigeons Columba livia were collected in commercial, industrial, park and resident areas of Seoul and heavy metal concentrations in their liver, kidney, bone and muscle tissues were measured to compare the levels of exposure by habitats. Statistical analyses showed some differences in the levels of heavy metals among these habitats. The levels of iron in liver and zinc in kidney were lower in resident area than in the other ones. Manganese and copper levels in all tissues were the highest in industrial area and park area, respectively. Lead bone level in resident area was the lowest, while that in commercial area was the highest. Cadmium level in kidney was higher in park area than in the other areas. Of these results, the levels of iron, zinc and lead in some tissues were related to traffic density in each habitats.

  • PDF

Interpretation of heavy metal elements from the road dusts using GIS (GIS를 이용한 도로 분진의 중금속원소 함량 해석에 관한 연구)

  • 이효재;이근상;이언호;장영률
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.201-213
    • /
    • 2002
  • Chemical analyzes were carried out the samples from roadsides of the Gwangju city. The purpose of this research is to investigate the concentrations and distribution patterns of heavy metals due to urbanization and industrialization in the Gwangju city This study area is not significantly contaminated based on the concentrations of Cd, Cu, Fe, Mn, Pb and Zn. However, the concentrations of the chemical elements analyzed are locally higher than those of serious contamination level indicated by Ministry of environment. The dust pH is in the rage of 5.60-7.09 and was generally neutral, and there are no difference in pollution area and nonpollution area. Chemical analyses utilized are dilution by 0.1N HCl. In result of analysis by the method using 0.1N HCl, concentrations of Cd and Cu are a little high in Gwangchondong of Seo-Gu. Concentrations of Mn and Pb are a little high in Buk-Gu and Nam-gu, and Concentrations of Zn are generally higher than average of soils. Zn, in the study area, keeps polluting greatly as Zn concentration of average is 150.9ppm. All of P.I values are lower than 1, it means heavy metal pollution is not serious.

  • PDF

The Environmental Safety Evaluation on Heavy Metal Leaching of Deteriorated Concrete under Severe Conditions (가혹한 조건에서 열화된 콘크리트의 중금속 용출에 대한 환경 안전성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Park, Man-Seok;Kim, Sang-Chel;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.539-546
    • /
    • 2013
  • Cement industry in 1997 began to use industrial waste in cement factory for purpose of resource recycling. However recently, environmental hazard of the cement in accordance with recycling of industrial waste have been raised a problem by contamination around the cement factory and heavy metal leaching in cement. In particular, the presence of $Cr^{6+}$ in cement has become a critical issue, the studies for minimizing of $Cr^{6+}$ in cement have been performed. But, in domestic, most of the research on heavy metal leaching was carried out from the perspective of the cement. Environmental safety assessment in terms of concrete is needed because cement is used to the concrete material. Therefore, this paper was evaluated heavy metals leaching of deteriorated concrete by severe conditions. test result showed that $Cr^{6+}$ were not detected from all the variables.

The Molecular Biomarker Genes Expressions of Rearing Species Chironomus riparious and Field Species Chironomus plumosus Exposure to Heavy Metals (실내종 Chironomus riparious와 야외종 Chironomus plumosus의 중금속 노출에 따른 분자지표 유전자 발현)

  • Kim, Won-Seok;Kim, Rosa;Park, Kiyun;Chamilani, Nikapitiya;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.86-94
    • /
    • 2015
  • Chironomous is aquatic insect belonging to order Diptera, family Chironomidae. Their larval stage can be found mainly in aquatic benthic environment, hence good model organism to study environmental toxicology assessments and consider as useful bio indicators of contamination of the aquatic environment. In this study, Chironomus Heat Shock Proteins, Cytochrome 450, Glutathione S-transferase, Serine-type endopeptidase gene expressions were compared between polluted field areas (Chironomus plumosus) and under laboratory conditions (Chironomus riparious) to investigate molecular indicators for environmental contaminant stress assessment. Heavy metal (Al, Fe, Mn, Cu, Cr, Zn, Se, Pb, As, Cd) concentrations in sediments collected from three study areas exceeded the reference values. Moreover, HSPs, CYP450 and GST gene expression except SP for C. plumosus showed higher expression than C. riparious gene expression. Similar gene expression pattern was observed in C. riparious that exposed environment waters up to 96 h when compared to C. plumosus exposed to waters that grown in lab conditions. In summary, this comparative gene expression analysis in Chironomous between field and laboratory condition gave useful information to select candidate molecular indicators in heavy metal contaminations in the environment.

Assessment for the Comparability between Korean Ministry of Environment Standard and ISO Standard for the Determination of Heavy Metals in Soil (토양 중금속 함량 측정에 대한 토양오염공정시험기준과 국제표준간의 적합성 평가)

  • Shin, Gun-Hwan;Lee, Goon-Teak;Lee, Won-Seok;Kim, Ji-In;Kim, Bo-Kyong;Park, Hyun-Jeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • According to the agreement on WTO/TBT, we are under the situation to adopt international standard (ISO standard) as a national standard if it exists. However, in case of environmental area, it is a domestic legal obligation to use Korean environmental standard method(KESM) for analyzing various contaminants. Therefore it is necessary to assess the comparability between KEM and ISO standard prior to apply ISO standard to soil conservation law in Korea. The main purpose of this study is to assess the comparability of both methods for analyzing heavy metals in soil. We looked over various aspects like pre-treatment, calibration curve range, detection wavelength, soil organic matter content and so on. Apparently, the procedure of both methods is almost same. However in details, both methods are different in stationary time before aqua-regia extraction using reflux system, calibration curve range for Cu, Pb, Ni and measuring wavelength for Pb. According to the results of comparison test, the results were significantly different when the different calibration range was used. In case that all the extracts independent of methods were reanalyzed with the same calibration range of each method, both methods showed statistically same results. Other conditions like different stationary time, measuring wavelength of AAS and soil organic matter content did not have any influence on the analytical result. Therefore, we suggest to extend the calibration curve range to 0~8 mg/L which is used in KS I ISO standard(Korean standard related with environment which is translation version of ISO standard without any technical change). In case of $Cr^{6+}$, the results showed no significant differences between two methods even though the pretreatment, instrumentation and other analysis conditions were different. In addition to UV/Visble spectrometry of KESM for soil contamination, we suggest to adopt ion chromatography of ISO 15192(US EPA method 7199) for analyzing $Cr^{6+}$ with the consideration of laboratory work efficiency.

Comparison of Soil Chemistry and Environmental Characteristics of Organic Paddy and Conventional Paddy Before Basal Fertilizer Application (기비전 유기논과 관행논의 토양 화학 및 환경 특성 비교)

  • Park, Jeong-Soo;Wang, Long;Kang, Ku;Gu, Bon-Wun;Kim, Han-Joong;Hong, Seong-Gu;Hong, Seung-Gil;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.47-57
    • /
    • 2015
  • Organic farming system has been considered environmental friendly and sustainable agricultural practice. However, the influence of organic farming on soil quality and environment is not well informed and controversial. We sampled and analyzed 0~15 cm and 15~30 cm depth soils of organic and conventional paddy fields in Yongin and Anseong. The electric conductivity and organic matter content of organic paddy soil were significantly less (p = 0.0097, 0.0067, respectively) than those of conventional paddy soil. Available phosphate and total phosphorus in 0~15 cm depth of organic paddy soil were $211.1{\pm}135.3$, $872.4{\pm}286.3mg/kg$, respectively, less than those of conventional paddy soil. Available phosphate amount in conventional paddy was $358.8{\pm}246.7mg/kg$, which is higher than 300 mg/kg that can cause secondary environmental contamination by runoff. The amount of total nitrogen in organic paddy soil was less than that in conventional paddy while their difference was not significant. The concentration of the heavy metals in organic paddy soil was also lower than that in conventional paddy soil but their difference was not statistically significant. Our findings demonstrate that electric conductivity, organic matter, nutrients, and heavy metals in organic paddy soil were less than those in conventional paddy soil. However, additional monitoring of soil properties for longer period is necessary to certify such a conclusion.

Effect of Saline Soil and Crop Growth with Bottom Ash from Biomass Power Plant Based Wood Pellet (우드펠릿 기반 바이오매스 발전소로부터 배출된 저회를 활용한 염류토양 및 작물성장에 미치는 영향)

  • So-Hui Kim;Seung-Gyu Lee;Jin-Ju Yun;Jae-Hyuk Park;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • BACKGROUND: The salt in soil interrupts crop growth. Therefore, water resources are used to remove any salt found in the soil. However, water resources have been reduced by global warming; thus, a new study is required into reducing the salt in soil. Recently, the bottom ash (BA) of a biomass power plant was found to be similar to biochar. Hence, it can be used to remove heavy metals and wastewater through the adsorption characteristics of BA. The objective of this study was to evaluate the improvement effects on crop growth in saline soil containing the BA from biomass power plants. METHODS AND RESULTS: The effect on crop growth in the saline soil supplemented with BA was studied with the crop-planted pots, which were packed by reclaimed greenhouse soils collected from Byolyang, Suncheon. The BA application level was 25, 50, 100, 200, and 400 kg/10a (referred as BA25, BA50, BA100, BA200, and BA400, respectively). The BA increased the fresh weights of the leaf and root, while nitrogen uptake increased by approximately 24-102% and 54-77%, respectively for the lead and root. The phosphorous uptake increased by 38%, although only in the leaf of the lettuce. In the case of soil, BA increased water content, pH, EC, CEC, and NH4+ and the SAR of the soil decreased by 5-15%. The bottom ash increased the contents of Ca2+ and Mg2+, and fixed the amount of Na+. CONCLUSION(S): It was confirmed the bottom ash of a biomass power plant, based on wood pellets, improved crop growth, and increased the nutrient uptake of crops in saline soil. In addition, bottom ash, which has a wide range of porosity and high values of pH and EC, improved properties of the saline soil. However, the BA has a large amount of B, As, and heavy metals. Finally, it may require a study on the safety and contamination of heavy metals contained in the bottom ash, which would be applied in soil for a long time.

Comparative Investigation of the Contamination characteristics on As contaminated Sites (비소 오염지역의 오염특성 비교조사)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1647-1654
    • /
    • 2008
  • The characteristics of arsenic(As) contamination were investigated on soils of 3 abandoned metal mine sites in Gangwon-do, Korea. Total forty nine soils were sampled to conduct standard methods(extraction by 1HCl), sequential extraction and column leaching test. Concentration of As extracted by 1N HCl was ordered as follows: A mine > B mine > C mine, and the concentration of arsenic in the soils of A mine was significantly greater than that at any other cases and all samples of A mine were exceeded the national regulation of $6mg \;kg^{-1}$. In the results of sequential extraction, the potential contamination risk for groundwater and plants was ordered as follows: C mine > B mine > A mine because the C mine showed the relatively greater mobility and bioavailability of fraction than any other mines. And, in colume test, concentration of As was ordered as follows: C mine > B mine > A mine, and it was expected that these results were connected with fraction characteristics of the mine sites. Therefore adequate leaching investigations should be used to simulate the effect of natural leaching conditions, and to predict both the potential mobility of metals to groundwater and their bioavailability to plants under natural conditions.

  • PDF

Assessment of Heavy Metal(loid)s Pollution in Arable Soils near Industrial Complex in Gyeongsang Provinces of South Korea

  • Kim, Yong Gyun;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.128-141
    • /
    • 2018
  • Industrial complex releasing huge amounts of dusts, fumes and wastewater containing heavy metal(loid)s could be a source of heavy metal(loid)s pollution in arable soil. Heavy metal(loid)s pollution in arable soil adversely affect crops safety, subsequently human being. Hence, it is important to accurately assess the heavy metal(loid)s pollution in soil using pollution indices. The objectives of this study are 1) to compare assessment methods of heavy metal(loid)s pollution in arable soils located near industrial complex in Gyeongsang provinces and 2) to determine the relationship between concentration of plant available heavy metal(loid)s and chemical properties of soil. Soil samples were collected from 85 sites of arable lands nearby 10 industrial complex in Gyeongsang provinces. The average total concentration of all heavy metal(loid)s of the studied soils was higher than that of Korean arable soils but did not exceed the warning criteria established by the Soil Environmental Conservation Act of Korea. Only six sites of arable soils for the total concentration of As, Cu and Ni exceeded the warning criteria (As: $25mg\;kg^{-1}$, Cu: $150mg\;kg^{-1}$, Ni: $100mg\;kg^{-1}$). The contamination factor (CF) and geoaccumulation index ($I_{geo}$) of the heavy metal(loid)s in arable soils varied among the sampling sites, and the average values of As and Cd were relatively higher than that of other metals. Results of integrated indices of As and Cd in arable soils located near industrial complex indicated that some arable soils were moderately or heavily polluted. The plant available concentration of heavy metal(loid)s was negatively related to the soil pH and negative charge of soil. Available Cd, Pb, and Zn concentrations had relatively high correlation coefficient with pH and negative charge of soil when compared with other heavy metal(loid)s. Based on the above results, it might be a good soil management to control pH with soil amendments such as lime and compost to reduce phytoavailability of heavy metal(loid)s in arable soil located near industrial complex.