• Title/Summary/Keyword: Heavy metal analysis

Search Result 820, Processing Time 0.026 seconds

An Equilibrium Analysis to Determine the Speciation of Metals in the Incineration of Waste Containing Chlorine and Sulfur (염소와 황을 함유한 폐기물의 소각시 생성되는 유해 중금속류 결정에 대한 화학평형 계산)

  • Lee, Jung-Jin;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1996
  • An equilibrium analysis was carried out to determine principal species in the incineration of hazardous waste, which was assumed as a compound of hydrocarbon fuel, chlorine, sulfur, and heavy metals, and their behaviors with variation of temperature, chlorine and sulfur concentrations. Calculated results showed that the most important parameter influencing the principal species was temperature. Chlorine concentration affected on mole fractions of the species, especially at high temperature. Existence of sulfur had a significant effect on the species at low temperature, regardless of surfur concentration. Generally, principal species at high temperature were chlorides and oxides, while the principal species at low temperature were sulfides. As temperature increased, mole fractions of the principal species increased at low temperature, however, mole fractions of some metal species decreased at high temperature.

  • PDF

Comparison of Heavy Metal Pollutant Exposure and Risk Assessments in an Abandoned Mine Site (폐광산 주변 토양 중금속 오염노출농도 우려기준과 위해성 비교 연구)

  • Choi, Jinwon;Yoo, Keunje;Koo, Myungseo;Park, Joon-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.261-266
    • /
    • 2012
  • In this study, soil environmental impact assessment using risk-based approach was compared with that using concentration-based approach. For this, heavy metal contaminant exposure was characterized in an abandoned mine area. According to the estimated carcinogenic and non-carcinogenic risks, soil ingestion was identified as the most dominant exposure pathway. When contaminant concentrations exceeded the Korean Soil Contamination Warning Standards, their corresponding risk values also exceeded the Total Soil Risk Standard. Even the cases of satisfying the Korean Soil Contamination Warning Standards mostly showed higher risk levels than the Total Soil Risk Standard, re-confirming a more sensitivity of the risk-based assessment than concentration-based assessment. However, the in-depth analysis of the estimated non-carcinogenic risk values revealed a few cases for soil contact pathway showing contaminant concentrations higher than the Korean Soil Contamination Warning Standards although their non-carcinogenic risk values satisfied the level of Hazard Index Standard. The findings from this study support a necessity of shifting policy paradigm from concentration-based approach into risk-based approach for reliable risk assessment in abandoned mine areas, and also suggest a necessity of further fundamental studies regarding risk factors and standards.

The Meteorological, Physical, and Chemical Characteristics of Aerosol during Haze Event in May 2003 (2003년 5월의 연무 관측시 에어로졸의 기상 · 물리 · 화학 특성)

  • Lim, Ju-Yeon;Chun, Young-Sin;Cho, Kyoung-Mi;Lee, Sang-Sam;Shin, Hye-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.697-711
    • /
    • 2004
  • Severe haze, mist, and fog phenomena occurred in the central part of Korea during 15~25 May 2003 resulted in poor visibility and air quality. When these phenomena occurred, Korean peninsula was under the effects of anticyclone. The atmosphere was stable, and wind speed was so weak. Under this meteorological conditions, air quality was worse and worse. The characteristics of aerosol in Seoul, Incheon, and Gosan (Jeju) during this period are investigated from the $PM_{10}$. TSP concentrations and aerosol number concentrations. Concentrations of $PM_{10}$ and TSP measured at KMA increased upto 176 and 230 J.${\mu}g/m^3$ on 22 May 2003, respectively. Aerosol number concentrations of size range from 0.82 to 6.06 ${\mu}m$ increased in Seoul on 17, 19, and 21~24 May 2003, and the concentrations of $NO_2$ and $SO_2$had maximum value of 0.165 ppm at Gwanak Mt. and 0.036 ppm at Guro-dong on 23 May 2003, respectively. Result from analysis on heavy metal elements showed high concentrations of Zn, Pb, Cr, Ni, Cu, and Cd during 20~24 May 2003. This event is examined by comprehensive analyses of synoptic weather conditions, satellite images, concentrations of suspended particles and air pollutants, and heavy metal elements.

Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein (TgMTP1 과발현 애기장대에서 Nickel 흡수 연구)

  • Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.409-413
    • /
    • 2015
  • To enhance phytoremediation, which removes heavy metal from soil, transgenic plants were applied to contaminated soil. We constructed a transformation vector expressing both $TgMTP_1$ (T. goesingense metal tolerance protein):HA and TgMTP:GFP genes. Transgenic plants were generated using an Agrobacterium-mediated transformation system that expressed the two vectors. Screening and analysis confirmed the incorporation of foreign genes into the Arabidopsis thaliana genome. Callus was induced in the 116 T3 line. These transgenic plants and calli were used for further analyses on the accumulation of Ni. The 116 T3-line plants and calli from selected lines were resistant to heavy metals and accumulated Ni in their leaves. The expression level of TgMTP RNA was equal in all leaves, but protein stability increased in the leaves with Ni treatment. According to these results, we suggest that $TgMTP_1$-overexpressing plants may be useful for phytoremediation of soil.

A Study on Correlations between Distribution of Sulfur Dioxide Concentration and Soil Environments by Using Passive Samplers (Passive Sampler를 이용한 $SO_2$ 공간농도분포 조사와 토양오염 상관성 연구)

  • Song, Young-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1025-1029
    • /
    • 2005
  • A simple analysis of atmospheric sulfur dioxide($SO_2$) pollution in industrial region was investigated using badge type passive samplers. It were set up in 76 locations and the $SO_2$ distribution evaluated along the boundary of land use type. It changed considerably both monthly and seasonally. Soil samples were also collected in 120 locations to investigate influence of sulfur dioxide pollution on soil and heavy metal distribution in the study area, where the sulfur dioxide pollutants from industrial area could affect the soil environment of near residential and green areas. The relationship between the $SO_2$ concentrations in the atmosphere and heavy metal(Cu, Pb) concentrations in the soil were analyzed, by using the correlation coefficient values and the results were 0.17 and 0.08 in industrial area. And this study indicated that the atmospheric pollution in industrial region affect the level of the soil pollution adjacent to the residential and green area. The study result may be used to define correlativity for establishing an exposure index. It will subsequently be used for a more precise assessment measuring the exposure of plants and inhabitants, for the purposes of a study en effects on health.

Analysis and improvement measures of nitrification using industrial wastewater with high Nikel concentration (고농도 니켈을 함유한 산업하수의 질산화율 분석 및 개선 방안)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.501-507
    • /
    • 2017
  • The heavy metal such as Nikel (Ni) in industrial wastewater is one of the major reasons of decreasing nitrification efficiency in municipal wastewater treatment plants (MWTPs). In this study, laboratory scale reactors were operated in order to analyse of nitrification efficiency and improvement measures. As a result, nitrification efficiency during high Ni concentration (0.295 mg/L) was about 20%. However nitrification efficiency during low Ni concentration (0.114 mg/L) was over 70%. The changes of the micro-organism activity according to Ni concentration was investigated as being the major reason behind the gap of nitrification efficiency through analysing AUR and SNR. Increasing the HRT in high Ni concentration also increased the nitrification efficiency. Thus, maintenance of microorganisms and increasing the HRT in nitrification reactors suggests that measures taken to treat wastewater is positively correlated with high concentration of heavy metal.

Effects of Fertilizer and Sewage Sludge Treatments on Germination and Growth of Woody Plants in Metal Mine Tailings

  • Lee, Sul-Ki;Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.445-452
    • /
    • 2000
  • The effects of sludge and fertilizer application on germination and seedling growth of woody plants on heavy metal mine tailings were evaluated by greenhouse experiment. Two different mine tailings (Lead-zinc mine tailings from Kwangmyong, Kyonggi-do and tungsten mine tailings from Sangdong. Kangwon-do). four fertilizer treatments (N +P +K: 20, 40, 60, and 80 kg/m$^3$), and four sewage sludge treatments (5.5, 11, 22.5, and 45 Mg/m$^3$) were used in the experiment. Tested plants were Pinus densiflora, Larix leptolepis, Amorpha fruticosa, and Alnus hirsuta. There were three replicates for each treatment. In addition, vermiculite was used instead of mine tailings to determine the effect of physical amendments. Fifty seeds of a species were sown in a pot (upper diameter 13.5 cm, depth 10 cm) and seedling emergence were recorded daily for 30 days. The highest germination rate was 53% for all treatments. Germination rate of Larix leptolepis was lowest among the four species studied. One month later after seeding, seedlings were thinned and only 5 seedling were left in each pot, and fertilizer and sewage sludge were applied once again. Growth of seedlings were determined for 10 weeks since then. Most plants grew very poorly or died within 5 weeks on lead/zinc mine tailings from Kwangmyong. The analysis of heavy metal contents by the total dissolution method showed that heavy metals generally increased in the order of tungsten mine tailings from Sangdong < sewage sludge from Puchon < lead/zinc mine tailings from Kwangmyong. Growth of woody plants was improved significantly by the fertilizer treatments on tungsten mine tailings. In contrast. survival and growth of woody plants were not affected significantly by the sewage sludge treatment on both tailings. This study shows that fertilizer applied to established seeded stands may provide some benefits in terms of increased ground cover in the field. It is suggested that reclamation should be proceeded by the study of the physico-chemical and biological characteristics of mine tailings.

  • PDF

Comparison of Particle Size Analysis and Distribution of Heavy Metals in River and Lake Sediments (하천 및 호소 퇴적물 입도분석 방식의 비교와 입도에 따른 중금속물질의 분포경향)

  • Oh, Hyungsuk;Shin, Wonsik;Kim, Joonha;Hwang, Inseong;Hur, Jin;Shin, Hyunsang;Oh, Jeongeun;Huh, Inae;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.15-23
    • /
    • 2010
  • Dry sieving, wet sieving and photoscattering analyzer were tested as particle size analyzing methods for sediments from rivers and lakes of Han river, Nakdong river, Youngsan river, and Kumgang river area. Dry sieving showed a big error due to coagulating effect over drying process and this phenomena was severe for lake sediment. Wet sieving and PSA showed an accurate results though wet sieving needs more labor and complicate processes. Freeze-dry or freeze-dry after oxidation of organics with hydrogen peroxide showed improved results but gave lower portion of fine particles in comparing with wet sieving. Heavy metal contents and extractable metal contents were investigated for the sediments and high heavy metal content and extractable amount were obtained from fine particles as expected. Using of proper particle size analyzing method is important and the sediment management should be focused on the fine particles.

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies

  • Zhang, Yu;Tang, Qiang;Chen, Su;Gu, Fan;Li, Zhenze
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 2018
  • Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md;Zhang, Yu-Ping;Kim, Min-Seok;Gopalan, Anantha Iyengar;Reddy, Kakarla Raghava;Lee, Kwang-Pill
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1985-1992
    • /
    • 2007
  • Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.