• Title/Summary/Keyword: Heavy Metal Pollution

Search Result 511, Processing Time 0.031 seconds

Study on the Heavy Metal Contents in Fishes and Shellfishes of Gyeongsangnam-Do Coastal Area-Part 1 (경상남도 연안지역 어패류 중의 중금속 함량에 관한 연구-제1보)

  • Ha, Gang-Ja;Song, Ju-Yeong
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.3
    • /
    • pp.132-139
    • /
    • 2004
  • As measure against the environmental pollution, maximum efforts to improve of the environmental pollution have also been made; removal of the contaminated sediments of the bay and the coastal area, monitoring of several heavy metal levels in fishes, shell fishes, sea water and sediment, and so on. The objective of this research is to investigate how much metals are included in the sea water, sediment, fishes and shell fishes in kyeongnam coastal area. Specifically, we are investigating the relationships between the metal included in fishes and sea water, and shell fishes and sediment, and heavy metals and heavy metals respectively. Heavy metal over the studied component and area, the average concentrations of Pb, Cd, Cr and Hg in sea water were 0.0029 mg/L, 0.005 mg/L, 0.0016 mg/L and ND, those of sediment were 11.9583 mg/kg, 0.2136 mg/kg, 1.9158 mg/kg and Hg 0.0108 mg/kg, those of fishes were 0.4358 mg/kg. 0.0726 mg/kg, 1.1188 mg/kg and Hg 0.0622 mg/kg, and those of shellfishes were Pb 0.6738 mg/kg, Cd 0.2223 mg/kg, Cr 0.5516 mg/kg and Hg 0.0117 mg/kg respectively. In the relationship test, Cd was significant in the relationship between fishes and sea water, and Hg was significant in the relationship between sediment and shellfishes.

Contamination Characteristics of Heavy Metals in Indoor, Outdoor and Playground of Schools in the Gochang-Gun, Chonbuk Province of South Korea (전북 고창지역 학교 실내외 환경의 중금속 오염 특성)

  • Kim, Yong-Hwan;Chung, Duk-Ho;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Dust samples were collected from 10 middle and high schools in the Gochang-Gun, Korea. Heavy metal concentrations were determined for the dry-deposited dusts from indoor and outdoor of classroom and playground of each sampling site. Concentrations of Cd, Cu, Pb and Zn in indoor's dusts were highly concentrated. Also concentrations of Cu, Ni, Pb and Zn in outdoor's dusts were highly concentrated. Concentrations of Cd, Cu and Zn in the dusts were much higher than the world average contents in soil and environmental orientation value. These levels are similar to those of the dust samples at middle schools and high schools located in Jeonju-city, Korea. Compared with concentrations of heavy metals in soils and dusts in Korea, the environment of indoor and outdoor of classroom is highly concentrated except for Cu, Zn. The concentrations of playground is less than that of residential dust and main road dust and playground in Jeonju-city. Playground dusts in 1 school exhibited the enhanced heavy metal pollution with a pollution index (Kloke, 1979) greater than 1.0, but indoor and outdoor dusts in 7 schools exhibited the enhanced heavy metal pollution with a pollution index (by Kloke) yester than 1.0.

Environmental Effects on the Hydrologic and Ecologic System around the Wasted Ore Dump of the Moak Gold-Silver Mine (모악 금·은광산에 방치된 폐석이 주변 수계 및 생태계에 미치는 환경적 영향)

  • Na, Choon-Ki;Jeon, Seo-Ryeong
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.221-229
    • /
    • 1995
  • The heavy metal contents and their dispersion patterns in stream water, stream sediments, land plants and aquatic larvae collected from the hydrologic system flowing via the wasted ore dump of the Moak Au-Ag mine were investigated systematically in order to evaluate the environmental impacts of the abandoned metal mine. The heavy metal content increases abruptly in the vicinity of the wasted ore dump, then attenuated with increasing distance from the mine area. Attenuating rates were stream water > stream sediments > land plants > aquatic larvae. On the other hand, the cumulative content of heavy metals was stream sediments >aquatic larvae > land plants > stream water. Each element tends to be enriched selectively according to media; Zn > Cu > Cd > Pb in stream water, Zn > Pb > Cu > Cd in stream sediments and land plants, and Zn > Cu > Pb > Cd in aquatic larvae. These results show that the degree of enrichment and dispersion of pollutant extruded from the wasted ore dump are different according to elements and media, and that the circulation system of materials of each medium is different. The heavy metals, especially Cu, Pb and Zn, of polluted downstream sediments occur in high proportions of Fe-Mn oxides and organic bounded forms, which show high potential of a secondary pollution source. The content of heavy metals and their dispersion patterns in stream sediments are different from those of ten years ago; pollution levels of heavy metals were degraded in various ranges. The Zn and Cu-polluted areas were widened whereas Fe and Pb-polluted areas were reduced. In crops collected from the farm lands in downstream area, the pepper was more concentrated in all heavy metal than rice. The pepper showed some contaminated level in Cu(9.7ppm) and Zn(149ppm), and the rice in Zn(90ppm). However, both crops showed no significant level in Cd(<0.2ppm) and Pb(<0.5ppm).

  • PDF

Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil

  • Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Yang, Jae E.;Ji, Won Hyun;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • Heavy metal pollution in agricultural field near the abandoned metal mines is a critical problem in Korea. General remediation technique is to apply chemical amendments and soil covering. However, there is no specific guidelines for conducting soil covering. Therefore, main objective of this research was to determine optimum soil covering technique with microcosm experiment. Three different chemical amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge (AMDS), were examined and varied soil covering depth, 20, 30, 40cm, was applied to determine optimum remediation technique. Bioavailable heavy metal concentration in soil and total concentration of heavy metals in crop were monitored. Result showed that average heavy metal concentration in varied soil covering depth was ordered as 40 cm ($14.5mg\;kg^{-1}$) < 20 cm ($14.6mg\;kg^{-1}$) < 30 cm ($16.0mg\;kg^{-1}$) and also heavy metal concentration in crop was ordered as 40 cm ($100{\mu}g\;kg^{-1}$) < 30 cm ($183{\mu}g\;kg^{-1}$) < 20 cm ($190{\mu}g\;kg^{-1}$). In terms of chemical amendments, average heavy metal concentration was decreased as AMDS ($150{\mu}g\;kg^{-1}$) < SS ($151{\mu}g\;kg^{-1}$) < LS ($154{\mu}g\;kg^{-1}$). Overall, depth of soil covering should be over 30 cm to minimize bioaccumulation of heavy metals and SS and LS could be applied in heavy metal contaminated soil for remediation purposes.

Determining Soil Quality of Heavy Metal Contaminated Agricultural Field in Korea (중금속 오염 농경지 토양의 토양질 평가에 관한 연구)

  • Kim, Ju Hee;Chung, Doug Young;Oh, Se Jin;Kim, Rog Young;Yang, Jae E.;Park, Gwan In;Lee, Jin Soo;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1237-1241
    • /
    • 2012
  • Heavy metal pollution in agricultural field has been a critical issue in worldwide. For this reason, remediation technologies for heavy metal polluted soil are applied especially near at the abandoned metal mine. Soil quality analysis is also an important factor for proper management in heavy metal polluted agricultural field. In this study, scoring function was utilized to evaluate soil quality in heavy metal polluted agricultural field. Among other soil properties, bulk density, soil pH, EC, $NH_4$-N, $NO_3$-N, and cation exchange capacity (CEC) were determined for minimum data set (MDS) with principal component analysis. Result showed that both upland and paddy soil contaminated with heavy metal were not suitable for crop growth except scoring of soil pH for paddy soil and CEC for upland soil. This result might indicate that chemical stabilization technology with chemical amendment could be adapted for remediation method for heavy metal polluted agiclutural field not only for heavy metal immobilization but also enhancement of soil condition for crop growth.

Evaluation of dye-ability and harmfulness of the reactive dyes replacing the metallic acid dyes for wool

  • Park, Ji-Yang;Park, Young-Hwan;Kang, Tae-Jin
    • Journal of Fashion Business
    • /
    • v.14 no.3
    • /
    • pp.116-127
    • /
    • 2010
  • Metal acid dyes are usually used to dye wool fabric to achieve high concentrated color and strong color fastness. However, metal acid dyes contain lots of heavy metal. That causes not only environmental pollution but also diseases to human. In this study, wool reactive dyes instead of metal acid dyes for wool, which are environmental friendly, are compared and analyzed in the evaluation system of their harmfulness, containing heavy metals and examined exhaustion rates and dyeing characteristics.

Some heavy metal concentration of surface sediments from the southwestern coast of Korea (서남해안 연근해저 퇴적물의 중금속 함량 및 분포)

  • 전수경;조영길
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1299-1305
    • /
    • 2002
  • Thirty sediment samples of the <63${\mu}{\textrm}{m}$ fraction collected from the southwestern coast of Korea were analysed for their heavy metal (Fe, Mn, Cr, Co, Cu, Ni, Zn and Pb) concentration. The results show that sediment texture plays a controlling role on the total metal concentrations and their spatial distribution. A single lM HCl extraction procedure was used in order to assess the environmental risk of heavy metals in bottom sediments. The non-residual fraction was the most abundant pool for Mn and Pb in most samples, which means that this metals are highly avaliable in these sediments. Cr, Ni, Fe, Co, Zn and Cu were mainly associated with the residual fraction, suggesting that their concentrations are controlled significantly by transport processes with the fine particles as carriers from diffuse pollution source. Concentration enrichment ratios(CER) were calculated from the non-residual contents and their values allowed us to classify the sediments according to their environmental risk.

A Study on the Removal of Heavy Metal with Mg-Modified Zeolite

  • Wang, Jei-Pil;Kim, Gyu-Cheol;Go, Min-Seok
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.287-292
    • /
    • 2020
  • The subject of this study is a zeolite generated as a by-product of recycling LAS (lithium-aluminum-silicate) resources, a kind of glass and ceramic produced by induction. The zeolite by-product is modified into Mg-zeolite using Mg as a cation to absorb Pb, a heavy metal generated from water pollution caused by recent industrial wastewater. An ion-exchange method is used to carry out the modification process, from zeolite byproduct to Mg-zeolite, and simultaneously absorb the Pb in the heavy-metal solution (99.032 mg/L). It is found that the sodium zeolite in the raw material residue can be modified to magnesium zeolite by reacting it with a mixture solution at 1 M concentration for 24 h. As a result, it is found that the residual Pb (0.130 mg/L) in the heavy metal solution is shown to be absorbed by 99.86%, with successful formation of a Mg-modified zeolite.

Study on the Potential of Phytoremediation using Wild Plants for Heavy Metal Pollution (중금속 오염에 대한 Phytoremediation 용 야생식물 연구)

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak;Kim, Kwang-Ho;Chung, Il-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 1998
  • The potentials of some Korean wild plants as a phytoremediator for cleaning heavy metal pollution were measured. Several plant species, Ambrosia trifida, Brassica juncea, Rumex crispus, and Abutilon theophrasti screened previously for phytoremediator were treated with cadmium and copper solution. In order to know the growth response to heavy metal stress, the plants were cultivated in hydroponic system containing heavy metals with different concentration. To know the effects of heavy metals on emergence and seedling growth, seeds of 4 species were sown in the pot and watered with heavy metal solution adjusted pH to 6.5, 5.5, and 4.5. A proposed species as potential phytoremediator, A. trifida, showed tolerance to $20{\mu}mol/L$ Cd and $80{\mu}mol/L$ Cu in nutrient solution without apparent growth reduction, and up to $100{\mu}mol/L$ Cd and $400{\mu}mol/L$ Cu without critical visual injury. Up to 311mg/kg of Cd and 369mg/kg were accumulated in dried aerial part in A. trifida. In contrast, A. theophrasti showed injury at $400{\mu}mol/L$ Cu. Significant differences were shown in Cu accumulation among the four species. A. trifida had much higher concentrations of Cd in the shoot, whereas R, crispus accumulated higher concentrations of Cd in the shoot. Testing plant species showed reduced emergence rate with heavy metal treatment. When pH was lowered, the emergence and seedling growth were affected severely with heavy metal. We can suggested that A. trifida was the most proper species for phytoremediation in heavy metal-polluted regions.

  • PDF

Characterization of Heavy Metal Pollution in Sediments of Major Reservoirs in South Korea (우리나라 주요 호소의 퇴적물 내 중금속 오염도에 따른 특성 분석)

  • Yun Sang Jeong;Dae-Seong Lee;Da-Yeong Lee;Ihn-Sil Kwak;Young Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • In this study, 46 reservoirs in South Korea were characterized based on heavy metal concentration in sediments. We analyzed the relationship between heavy metal concentrations, physicochemical water quality and hydromorphological factors in each reservoir. Study reservoirs were classified into five groups of reservoirs, by hierarchical cluster analysis based on the similarities of heavy metal concentration. Group 1 had the most severe sediment heavy metal contamination among the groups, whereas Groups 2 and 3 showed low levels of heavy metal contamination. Group 4 displayed high value of Ni, and Group 5 showed high contamination of Pb, Cu, Cr, Ni, and Hg. Groups 1 and 5, which had high concentration of heavy metals in sediments, showed a high density of mines in the catchment of reservoirs. Heavy metal concentration was high in reservoirs with large capacity or the ones located at higher elevation, and also highly related with number of mines in the catchment of reservoir. This study can contribute to the systematic management of sediment heavy metals in reservoirs.