• Title/Summary/Keyword: Heaving

Search Result 219, Processing Time 0.022 seconds

Study on the Thrust Generation of a Flat Plate in Heave Oscillation Using a Lattice-Boltzmann Method (격자볼츠만 법을 사용한 히브진동 운동하는 평판에서의 추력발생 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Lee, Jong-Shin;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.397-403
    • /
    • 2007
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for locomotion. To develop a feasible flapping MAV, it is of crucially important to study the fundamental relations between flapping motion and thrust generation. In this paper, the onset conditions of the thrust generation of a heaving flat plate is investigated using a Lattice-Boltzmann method. For a fixed heaving amplitude of h/C=0.5, the effect of reduced frequency on the thrust generation is investigated. For several values of heaving amplitude(h/C=0.25, 0.325, 0.50), the effect of reduced frequency on the thrust generation is also investigated. It can be said that Strouhal number is more important rather than reduced frequency in case of thrust generation. It is found that the critical Strouhal number over which the flat plate starts to produce thrust is around 0.1. Thrust is an exponential function of the Strouhal number.

MOTION DESIGN OPTIMIZATION OF AUV DOUBLE HYDROFOIL FOR IMPROVEMENT OF THRUST AND EFFICIENCY (추력과 효율 향상을 위한 AUV Double Hydrofoil의 모션 최적설계)

  • So, H.K.;Jo, T.H.;Lee, Y.H.;Kim, J.S.;Han, J.H.;Koo, B.C.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2016
  • While most AUV researches have concerned about single hydrofoil, practical AUV's are generally operated with multiple hydrofoils. Double hydrofoil study attempts to evaluate thrust and efficiency with various flapping motions, and carries out design optimization using parametric analysis. Flow patterns such as vortex shedding and wake-body interaction are carefully investigated during design variable sensitivity analysis. The purpose of this design optimization is to find out the optimal motion that yields maximum thrust and efficiency. The design optimization employes several techniques such as table of orthogonal arrays, Kriging method, ANOVA analysis and MGA. Throughout this research, it is possible to find the optimal values of heaving ratio, heaving shift and pitch shift: Heaving ratio 0.950, heaving shift $23.120^{\circ}$ and pitch shift $89.991^{\circ}$ are found to be optimal values in double hydrofoil motions. Thrust and efficiency are 16.7% and 35.1% higher than existing AUV that did not consider nonlinear dependency of motion parameters. This results may offer an effective framework that is applicable to various AUV motion analyses and designs.

A Study on the Suitability of the Mohr-Coulomb Model for Numerical Analysis of Ground Excavation (지반굴착 시 Mohr-Coulomb 모델 적합성에 관한 수치해석적 분석)

  • Lee, Jonghyun;Jin, Hyunsik;An, Joonsang;Baek, Yong;Yoon, Hyeongsuk
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • The Mohr-Coulomb model is mainly used in evaluating the behavior of the ground in numerical analyses of domestic ground excavation. This study analyzes its limitations and compares its numerical results with the hyperbolic model, a model that closely follows actual ground behavior during excavation. Recent applications of the Mohr-Coulomb model in Korea have tended to impose arbitrary special boundary conditions to control the problem of excessive heaving of the ground excavation surface. This adjustment only controls the size of the heaving of the excavation surface, implying that the ground behavior is distorted from the actual behavior. This study compares results from the hyperbolic model (hardening soil model) and the Mohr-Coulomb model, and confirms that the hyperbolic model provides both a more-suitable solution to the problem of heaving during excavation and the actual stress-strain behavior. In numerical analyses of ground excavation, the hyperbolic model is expected to give results consistent with the actual ground behavior.

A Study on Behavior Characteristics of Soft Ground by DCM Arrangement Type (DCM 배치 형상에 따른 연약지반 거동 특성에 관한 연구)

  • You, Seung-Kyong;Lee, Jong-Young;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.125-131
    • /
    • 2021
  • This study described the relationship of settlement-lateral displacement and settlement-heaving according to the DCM type using the model test results, in order to evaluate the behavioral characteristics of the soft ground improved with DCM. As a result, it was found that the total settlement of the model ground was relatively small in the soft ground, to which the DCM was applied, and the settlement was less in the order of the grid type, wall type, and pile type under the same load conditions. This trend was also the same for the lateral displacement and heaving. In addition, the relationship between settlement and lateral displacement of soft ground was analyzed to be similar to that of previous study (Leroueil et al., 1990). Therefore, the DCM of grid type was evaluated to be superior to other types for lateral flow and heaving in the improvement effect of soft ground.

Hybrid Control of an Active Suspension System with Full-Car Model Using H$_{}$$\infty$/ and Nonlinear Adaptive Control Methods

  • Bui, Trong-Hieu;Suh, Jin-Ho;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1613-1626
    • /
    • 2002
  • This paper presents hybrid control of an active suspension system with a full-car model by using H$\sub$$\infty$/ and nonlinear adaptive control methods. The full-car model has seven degrees of freedom including heaving, pitching and rolling motions. In the active suspension system, the controller shows good performance: small gains from the road disturbances to the heaving, pitching and rolling accelerations of the car body. Also the controlled system must be robust to system parameter variations. As the control method, H$\sub$$\infty$/ controller is designed so as to guarantee the robustness of a closed-loop system in the presence of uncertainties and disturbances. The system parameter variations are taken into account by multiplicative uncertainty model and the system robustness is guaranteed by small gain theorem. The active system with H$\sub$$\infty$/ controller can reduce the accelerations of the car body in the heaving, pitching and rolling directions. The nonlinearity of a hydraulic actuator is handled by nonlinear adaptive control based on the back-stepping method. The effectiveness of the controllers is verified through simulation results in both frequency and time domains.

The Study on the Behavior of Closed-Faced Shield Tunneling by Two Dimensional Elasto-Plastic Analysis (2차원 탄소성해석에 의한 밀폐형 실드터널의 거동에 관한 연구)

  • 진치섭;이홍주;한상중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.199-207
    • /
    • 1996
  • In the past decade soft clay shield tunneling technology have been improved to permit continuous support to the face of a tunnel. These advanced shield can be operated such that an initial heaving is created, this helps to decrease the inward soil movement into the tail void. In this paper, the measurement of slurry shield and EPB shield were used and two dimensional elasto-plastic programs EPSHILD developed for shield tunnel analysis were approved. The excavation steps corresponding with construction stages were settled and heaving load, load factors were considered. This study is based on the instantaneous settlement which is occured in the process of shield construction but not the secondary settlement by consolidation.

  • PDF

Analisys on Freezing Characteristics of Pavement Layer Using the Feild Pavement Model test (현장 모형 도로 축소 실험을 이용한 포장구성층의 동결 특성 분석)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Moon, Yong-Soo;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1164-1171
    • /
    • 2010
  • Korea is considered to be a seasonal frozen soil area that is thawed in the spring, and most of the area is frozen in winter as to the characteristic of geography. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this research, the evaluation of frost susceptibility on subgrade, ant-freezing layer, sub base was conducted by means of the mechanical property test and laboratory field road model downed scale experiment. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade, anti-freezing layer, sub base soils of highway construction site, were measured to determine the frost susceptibility.

  • PDF

A Numerical Analysis on the Characteristics of Frost Heaving at Road Pavement in Korea (국내 도로포장의 동상 특성에 대한 수치해석적 연구)

  • Kweon, Gi-Chul;Oh, Se-Boong;Kim, Hyung-Bae;Choi, Chang-Gyu
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.37-47
    • /
    • 2003
  • The basic study was performed on the mechanical analysis of frost and heave using program FROST by CRREL, U.S. army corps of engineers. The characteristics of frost heaving in pavement was analyzed by considering climate, pavement sections and subgrade soil conditions in Korea. Water tables were located at the depth of 0.35m, 2m and 3.35m from subgrade. Inputs were evaluated inevitably from the existing references. As a result frost heave and depth were evaluated with respect time. Maximum frost heave decreased lowering the water table and maximum frost depth was less than 15cm from subgrade. Frost action did not affect seriously on the analysis sections.

  • PDF

Behavior Characteristics of Water Supply Pipeline Due to Freezing Temperature (동결온도가 상수도관의 거동에 미치는 영향)

  • Shin, Eun Chul;Ryu, Byung Hyun;Kang, Hyoun Hoi;Hwnag, Soon Gab
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • This paper presents the results of a field pilot test about deformation of water supply pipelines due to freezing temperature. There is a difference between for frost heaving load to act on the water supply pipelines. If the Marston-Spangler theory is only considered for the frost heaving load to act on the water supply pipeline, it is likely to deviate from the safety of the water supply pipeline, strains of the water supply pipeline show a tendency of smaller value than the value of numerical analysis.

Analysis of Frozen Reduction Effect and Economic Evaluation of Recycled PET-Soil (재활용 PET 재료를 이용한 골재의 동상저감 효과 분석 및 경제성 평가)

  • Shin, Eun Chul;Shin, Hui Su;Kim, Gi Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.153-159
    • /
    • 2014
  • During the winter and spring seasons in Korea, structures such as buried water supply pipelines, roads, railways are frequently damaged due to frost heaving and thawing. Until now, the method of substituting the frost susceptible soil with the gravel or rubbles those are non-frost susceptible materials have been employed in Korea to prevent frost heaving. A series of laboratory soil tests and indoor frozen soil engineering experiments, as well as laboratory frost heaving tests were conducted for seeking the means of utilizing recycled PET bottles as substitute material.