• Title/Summary/Keyword: Heating system

Search Result 3,572, Processing Time 0.032 seconds

A Design and Application of the Ventilating and Heating System of T-103 Trainer Aircraft for Improvement (T-103 훈련기의 환기와 난방 시스템 개선에 관한 연구)

  • Jung, Daehan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • In this paper, the ventilating and heating system of T-103 trainer aircraft were investigated and redesigned to improve its poor performance. The ventilation system of the trainer was designed to increase the mass flow rate of fresh air by using air intake valves. The flow-in air through the air intake valve is supplied to the cabin by the ram effect of aircraft and the propeller. And the additional heating system was installed to improve the temperature of the cabin inside. The wasted heat from the exhaust gas of the engines was used as heat source of the additional heating system by installing an heat exchanger around the exhaust nozzle. The additional fresh air and the heated air enter the cabin via two ducts mounted under the instrument panel and behind the pedal in the cabin. The additional ventilating and heating system can be controlled by the first pilot and the secondary pilot individually using the control knob equipped separately. After mounting the additional ventilating and heating system, evaluations such as inspection of parts and component, ground run-up test, in-flight test, user test, etc. were conducted. The result of the tests was sufficient to meet the requirements of the manuals, and the pilots were satisfied with the additionally mounted systems.

A Study of Storage Type Cooling and Heating System by Heat Pipe (히트파이프를 이용한 축열식 냉.난방 시스템에 관한 연구)

  • Kim, Seong-Sil;Harm, Seong-Chol;Lee, Yang-Ho;Choi, Byoung-Youn
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.3-8
    • /
    • 2006
  • The heat pump system is attractive alternatives to conventional heating and cooling systems owing to their higher energy utilization efficiency. The thermal loads of commercial and institutional buildings are generally cooling-dominated. In this study have been developed ice storage type heat pump system for cooling and heating by heat pipe. This system was practiced performance test on evaluation criteria for heat storage systems. Accomplished the actual proof examination and looked into the performance of the system. In this study, measurement and analysis of ice storage type heat pump system for cooling and heating by heat pipe. The heat pump unit COP appears 3.05 for cooling and 4.20 for heating. As a result, the method to energy saving and to using a substitute energy actively that is heat pump cooling & heating system is expected by heat pipe. Thermal storage capacity appears $19.5RTH/m^3$ for cooling.

  • PDF

Optimum Collector Area and Economic Evaluation for the Greenhouse Heating (태양열 온실 난방에 대한 최척 집열 면적과 경제성 평가)

  • Pak, Ee-Tong;Kim, Kyu-In
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 1982
  • Aim of this study was to obtain the heating performance and the economic evaluation on solar heating system for greenhouse which area of floor was $90m^2$. For heating performance effective solar energy for the greenhouse was compared with overall heating loads including coefficient of heat transfer and conduction. And the economic evaluation solar heating system was evaluated by comparison its initial investiment costing with oil saving cost. Initial investiment costing included collector cost, storage cost, piping cost, control system cost and miscellaneous costs which included pumps, motors etc. The contents of this study included the survey of climate conditions for solar heating, long-term collector performance and optimum collector area of solar heating system in existing greenhouse. The results are follows: 1. Average horizontal radiation during winter was $2,434Kcal/m^2$ day which was the highest value in this country, so the climate conditions of Suwon was suitable for solar heating. 2. Resulting calculation of the optimum collector area was $30m^2$ and the solar energy accounted for 30% of the overall heating load. 3. The capacity of storage tank required 60 liter per unit area ($m^2$) of solar collector.

  • PDF

A Study on the highly efficient ondol system combined the strengthen polyethylene pipe with pulsating heat pipe (강화폴리에스테르튜브(XL 튜브)에 진동형 히트 파이프를 결합한 고성능 난방 패널의 성능에 관한 연구)

  • Kim, Chang-Hee;Kim, Jong-Su;Woo, Jae-Ho;Kong, Sang-Wun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.578-583
    • /
    • 2008
  • Korea which has change of clear season is using unique heater by the name of On-dol being invented since ancient times. Floor-heating device has no radiator, and generates no noise and dust. It can obtain satisfied heating sense than other heating system in low room temperature. And also it is a pleasant system that equals bottom and top temperature in a room. The purpose of this study is to develop the Floor-heating device using pulsating heat pipe. It propose floor-heating device using pulsating heat pipe of the dry process which alternative polyethylene pipe(low XL pipe) that is used widely to existent floor heating system and produce pilot Experiment and analyzed operation condition and performance of most suitable. In this study, main purpose is to develop floor-heating system using pulsating heat pipe by finding an optimum working condition according to changing ratio and evaluating a performance.

  • PDF

Heating Performance and Energy Consumption Characteristics with Control Strategies for Central Heating System (중앙난방시스템의 제어방법에 따른 난방성능 및 에너지소모량 특성 연구)

  • Song, Jae-Yeob;Yang, Wan-Youn;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 2011
  • In this study, heating performance and energy consumption characteristics with control strategies for central heating system were researched by the simulation. The simulation analysis is made by TRNSYS ver. 15 with the actual data. The parametric study on proportional factor, control time interval and outdoor air temperatures changes were done to compare control characteristics and energy performance, respectively. As a result, the simulation results with various parameter changes show good heating performance and energy saving.

The Optimum Temperature of Brine Heating System for LNG Storage Tank (LNG 저장탱크용 Brine Heating System의 최적온도 설정)

  • Oh, B.T.;Hong, S.H.;Yang, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.361-366
    • /
    • 2001
  • The purpose of installation of the brine heating system for LNG storage tank is the prevention of ground freezing. If the ground of LNG tank areas is frozen, it is caused by safety problems. The design of brine heating system for LNG storage tank which is constructing in our country is not well considered about domestic weather conditions and economical efficiency. Therefore, this paper reports on the study of the optimized temperature of inside pipes and cooling process through the transient analysis by using the existing brine heating system.

  • PDF

The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors (실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가)

  • Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Ji-Seong;Park, Se-Hyeon;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System (지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링)

  • Park, Young Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

Operating Characteristics of the Flow Control Valve for the Radiant Heating System (복사난방용 유량조절 밸브의 작동특성 연구)

  • Pyo, Jin-Soo;Jang, Choon-Soo;Choi, Kwang-Suk;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.552-557
    • /
    • 2007
  • Due to the recent improvement of living standard of residential buildings, the requirements of the thermal comfort and energy saving in heating system have been raised. The radiant floor heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. The uniform flow distribution is very important factor for a radiant floor heating system such as a blood vessel system in human body. Therefore, it is necessary to investigate the operating characteristics to develop an optimal radiant floor heating system. In this study, numerical analyses were carried out, using a commercial CFD code, FLUENT, to obtain the velocity distribution under steady, three-dimensional, standard k-$\varepsilon$ model and no-slip condition. Results are graphically depicted with various parameters.

  • PDF