• Title/Summary/Keyword: Heating surface

Search Result 1,610, Processing Time 0.03 seconds

Optimization for Hot water Extraction Condition of Liriope spicata Tuber Using Response Surface Methodology (반응표면분석법에 의한 맥문동 열수추출 조건의 최적화)

  • 김순동;구연수;이인자;박인경;윤광섭
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • Optimal conditions for hot water extraction of Liriope spicata tuber were investigated with changes in solvent ratio(2∼6 fold) and heating time(1∼5 hr) by response surface methodology. The content of extractable solids increased with an increased in solvent ratio, and the highest content showed at heating time of 3 hr. The content of total steroid saponin increased with a decrease in solvent ratio, and increased with an increase in heating time at increasing the solvent ratio. The content of non-reducing sugar containing oligosaccharides at a lower solvent ratio didn’t show changes depending on heating time, while that at a higher ration decreased with an increase in heating time. Optimal extraction conditions using hot water as the limited conditions of 15∼18% extractable solids, 1.5∼2.0% total steroid saponin, 6∼8% reducing sugar, 6∼7% non-reducing sugar and 13∼15 brix were 3 hrs of heating time and 4 fold of solvent ratio.

  • PDF

Analysis on Aerodynamic Heating on Spike and Dome Configuration (스파이크와 돔 형상의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109-113
    • /
    • 2002
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

  • PDF

A Study on Induction Heating with Forced Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 강제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Park Joon Hong;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-102
    • /
    • 2005
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

Spalling Properties of Ring-Type Restrained Concrete by Heating Conditions (가열조건에 따른 링형 구속 콘크리트의 폭렬특성)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • In this study, surface spalling and explosive spalling of ring-type ultra-high strength concrete under rapid heating and slow heating were investigated. In rapid heating, the internal temperature difference of the concrete is large, so that continuous surface spalling occurs. However, in slow heating, the difference in the internal temperature of the concrete is small, resulting in explosive spalling at a time. Since the heating condition has a great influence on the internal temperature of the concrete, it is necessary to consider the spalling of the concrete under various heating conditions.

  • PDF

A Changes in Surface Temperature of Woodceramics Made from Pinus densiflora S. et. Z. - Effect of Heating Rate and Keeping Time at Maximum Temperature - (소나무로 제조된 우드세라믹의 표면온도변화 - 승온속도 및 최고온도에서 유지시간의 영향 -)

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.22-28
    • /
    • 2007
  • Using woodceramics made from sawdust board of pine thinning logs, changes in surface temperature were investigated, by the heating rate and keeping time at maximum temperature. The heating rate of $2^{\circ}C/min$ and keeping time at maximum temperature 1 hour, were the highest in surface temperature. Also, it was found that woodcermics maintained heat for a long time because the descending velocity of their surface temperature was slower than that of the heater.

An Experimental Study on the Manufacturing Method and Performance of Planar Thick Film Heaters for Electric Vehicle Heating (전기자동차의 난방용 면상 후막히터의 제조방법과 성능에 관한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.685-692
    • /
    • 2024
  • Currently used heating elements are metal and non-metal heating elements, including various types of heaters, and resistance line heating elements have a problem of decreasing thermal efficiency over time, so to solve this problem, a planar heating element using high-purity carbon materials and oxidation-resistant inorganic compounds was applied. Through the manufacture of planar heating elements using CNT, ruthenium composite materials, and ruthenium oxide, physicochemical performance and capacity were increased, and instantaneous responsiveness was increased. Through thick film technology applicable to various base bodies, fine patterns were formed by the screening method in consideration of the fact that the performance of the heat source depends on the viscosity and pattern shape. The heating element was manufactured by thick film printing technology by mixing ruthenium oxide, CNT, Ag, etc. The characteristics of each paste were analyzed through viscosity measurement, and STS 430 was used as a base. Surface temperature and efficiency were measured by testing heaters manufactured for small wind tunnels and real-vehicle experiments. The surface temperature decreased as the air volume increased, and the optimal system boundary was found to be about 200 mm. Among the currently used heating elements, this paper manufactured a planar heating element using thick film technology to find out the relationship between air volume and temperature, and to study the surface temperature.

Study on Pultrusion of FRP by Dielectric Heating (유전가열에 의한 FRP의 인발성형 연구)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.445-448
    • /
    • 2004
  • Radio frequency and microwave dielectric heating are well-known electroheating methods, used in industrial applications where non electrically conducting materials are to be heated, dried or otherwise processed. The major reason for considering this technique for any process is based on its unique ability to transfer heat into the volume of an electrically non conducting material such as insulator directly, rather than, via a surface. Conventional heating must first bring heat to the product surface and there after it depends on the physical characteristics and condition of the material as to how effectively this heat is transmitted into the mass. The product would suffer surface damage before the main body is adequately processed. Dielectric heating is applied to enhance conventional heating methods and to drastically shorten the required processing duration. Although the use of dielectric heating has been a well proven technique for several years in some industries, its application in the preheating of FRP has been limited by the insufficient experience. In this paper a method is described for uniform radio frequency heating of preheating of FRP.

  • PDF

A New Algorithm to Determine Heating Lines for Plate Forming by Line Heating Method (선상가열법에 의한 강판 가공의 가열선 결정 알고리즘)

  • Chang-Doo Jang;Sung-Choon Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.104-113
    • /
    • 1998
  • The line heating method is a popular technique used to form ship hull in shipyards. In order to promote shipbuilding productivity, some researchers have made progress in their studies on automatic fabrication system for plate forming. These researches have, however, focused on heat-induced plate deformation with particular mechanical modelings, and do not yet propose the heating paths applicable to actual plate forming process. In this paper, a new algorithm to determine heating lines is developed to simulate the line heating process. The important feature of this algorithm is that it calculates principal curvatures of deflection difference surface which represents difference between target surface and surface in fabrication. Several trials to typical surface types show its usefulness and good applicability to tactical use.

  • PDF

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.