• Title/Summary/Keyword: Heating pressure

Search Result 919, Processing Time 0.026 seconds

The Fusion Characteristic Varying with Butt Fusion Times for Polyethylene Pipe (PE배관 버트 융착 시간에 따른 융착 특성 변화)

  • 이영순;장영오
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.199-205
    • /
    • 1998
  • Butt fusions were practiced with butt fusion in the various conditions of fusion temperatures, pressure and time, and the tests of tesile strength, breaking water pressure and fusion features were also practiced so that the reliability of the butt fusion and the fittets fusion condition may be closely examined. And the width, height and thickness of the beads were also closely measured. The fittest fusion result was achieved in the condition of the temperature of $210^{\circ}C$, heating time hight pressure of 14 seconds on the pressure of $1.5kg/cm^2$, heating time hight pressure of 100 seconds and pressure buid-up time of 11 seconds. And in case of the temperature of $250^{\circ}C$, the fittest fusion result was showed in the condition of the heating time hight pressure of 3 seconds on the pressure of 1.0$kg/cm^2$, the heating time low pressure variable of 100 seconds. heating time hight pressure of 14 seconds and the heating maintenance of around 60 seconds. The result of breaking water pressure test of a test piece fusion in the fittest fusion condition was that the fusion condition of the PE pipe showed a good stability and hight reliance. Through this test, it is proved that the temperature of fusion PE pipes can be increased to $250^{\circ}C$ from $210^{\circ}C$. And it can be expected that the above fusion method greatly helps to reduce the fusion time.

  • PDF

A study on mechanical properties of friction weld interface in metal bearing (Metal Bearing 마찰용접면의 기계적 성질에 관한 연구)

  • 오세욱;이영호;민택기
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.20-26
    • /
    • 1990
  • In this study, to make research on its optimum condition in friction weld when the heating pressure is change during 1.6 to 3.0 $kgf/mm^2$, the experiment was performed with metal bearing under various condition; 1600 r.p.m spindile speed, 0.6 $kgf/mm^2$ preheating pressure, upset pressure 2.6 $kgf/mm^2$, 0.5 seconds preheating time, 1.7 seconds heating time, water and air was ejected 6 $kgf/mm^2$ into the bushing. On the basis of the experimental results, the following conclusion are drawn; 1) At the area of weld interface, the heardness is shown the maximum value and heat-affected zone about 0.5mm both sides. 2) Bending strength is shown the optimum heating pressure 2.4 kgf/mm. 3) With the approach of the flash, Sn is increased only 2 mm in A-alloy structure.

  • PDF

Performance Analysis of Simultaneous Heating & Cooling Water Making System(I)-Simulation (냉.온열 동시 제조시스템의 성능분석(I)-Simulation)

  • Park, Seong-Ryong;Park, Jun-Tack;An, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.266-271
    • /
    • 2001
  • In this study, the performance of the simultaneous heating & cooling water making system using R134a was investigated by simulation. The most important effect upon heating COP was intermediate pressure depending on input water temperature. With the input water temperature of $10^{\circ}C\;and\;20^{\circ}C$, optimum intermediate pressure were 923 and 1040kPa, respectively. At that optimum intermediate pressure, the maximum heating COP of the system operated between $0^{\circ}C$ evaporating temperature and $70^{\circ}C$ condensing temperature were 4.15 and 3.83. With installation of the subcoolers in high or low pressure section, the system COP was increased by reducing the refrigerant mass flow rate. Under the optimum pressure and $10^{\circ}C$ input water temperature, it was found that heating COP was maximized when the low-subcooler and high-subcooler capacity rate were taken by 14% and 13%, respectively.

  • PDF

A Study on the Strategy to Maintain Optimal Flow-rate and Pressure of the Piping System for Individual Heating (개별 난방방식에서의 배관 내 절정 유량 및 압력유지에 관한 연구)

  • Hong Seok-Jin;Ryu Seong-Ryong;Seok Ho-Tae;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2006
  • For the more comfortable thermal environment in residential buildings, it was necessary for variable components like as automatic flow limiting valves and/or balancing valves in hydronic system. And, these components had an effect on flow-rate and pressure inside pipe. In this case, the incompatibility between the design for the heating system and the selection of equipment was the causes of several problems in heating pipe network. In this study, we peformed measurements and analyses of flow rate and pressure inside pipe for radiant floor heating in residential buildings through field surveys and experiments in order to find out the actual conditions and problems. On the basis of this, we suggested the approach for the optimal flow-rate and pressure maintaining inside pipe in individual heating system.

A Study on Friction Welding of Localized SPS5 Spring Steel (국산 SPS5 스프링강의 마찰용접에 관한 연구)

  • Jeong, S.U.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.803-808
    • /
    • 2000
  • This thesis studied whether friction welding of SPSS, localized torsion bar material could be accomplished or not. And then optimum welding conditions were examined and leaded through tensile, impact, torsion and hardness test after postweld heat treatment of the actual field condition. Obtained results were as follows; Linear relationship was existed between heating time and total upset, and a quadratic equation model could be made between tensile strength and heating time. Optimum welding conditions with fine structure were as follows in case total upset(U)=8.5mm; the number of rotations(n)=2,000 rpm, heating pressure($p_1$)=80MPa, upset pressure($p_2$)=200MPa, heating time($t_1$)=4sec, upset time($t_2$)=3 sec.

  • PDF

Thermal stress and pore pressure development in microwave heated concrete

  • Akbarnezhad, A.;Ong, K.C.G.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.425-443
    • /
    • 2011
  • Most previous studies have generally overlooked the contribution of thermal stresses generated within the concrete mass when subjected to microwave heating and reported on pore-pressure as being the dominant cause of surface spalling. Also, the variation in electromagnetic properties of concrete and its effects on the microwave heating process have not been studied in detail. In this paper, finite element modeling is used to examine the simultaneous development of compressive thermal stresses and pore-pressure arising from the microwave heating of concrete. A modified Lambert's Law formulation is proposed to estimate the microwave power dissipation in the concrete mass. Moreover, the effects of frequency and concrete water content on the concrete heating rate and pattern are investigated. Results show high compressive stresses being generated especially in concrete with a high water content when heated by microwaves of higher frequencies. The results also reveal that the water content of concrete plays a crucial role in the microwave heating process.

Optimization for Friction Welding of AZ31 Mg Alloy by Design of Experiments (실험계획법에 의한 AZ31마그네슘합금의 마찰접합시 최적공정설계)

  • Kang, Dae-Min;Kwak, Jae-Seob;Choi, Jong-Whan;Park, Kyeong-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.64-69
    • /
    • 2011
  • Magnesium alloy has been known as lightweight material in automobile and electronic industry with aluminum alloy, titanium alloy and plastic material. Friction welding is useful to join different kinds of metals and nonferrous metals they are difficult to be joined by such as gas welding, resistance welding and electronic beam welding. In this study, friction welding was performed to investigate optimization process of Mg alloy with a 20mm diameter solid bar. For that, the orthogonal array $(L_{9}(3^{4}))$ was used that contained four factors and each factor had three levels. Control factors were heating pressure, heating time, upsetting pressure and upsetting time. Also tensile tests were carried out to measure mechanical properties for welded conditions. The levels of heating pressure and upsetting pressure used were 15, 25, 35MPa, and 30, 50, 70MPa, respectively. In addition those of heating time and upsetting time were 0.5, 1, 1.5 sec and 3, 4, 5 sec., respectively, rotating speed of 2000rpm. From the experimental results, optimization condition was estimated as follows; heating pressure=35MPa, upsetting pressure=70MPa, heating time=1.5sec, upsetting time=3sec.

Power Generation and Control System Using Differential Pressure of District Heating Pipeline in a Substation (지역난방 사용자기계실 내 열수송관 차압을 이용한 발전 및 제어 기술)

  • Kim, Kyung Min;Park, Sung Yong;Oh, Mun Sei
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.90-96
    • /
    • 2017
  • When the hot water is supplied through the district heating (DH) pipeline, a pressure differential control valve (PDCV) protects the DH user equipment from the high pressure DH water and helps to supply DH water to long distance. It also controls the temperature and adjust the pressure in the main district heating pipeline. However, cavitation occurs in PDCV due to the use of high pressure DH water. It causes frequent failures and many problems. It also causes energy loss and complaints to both operators and users. In order to solve these problems, we will introduce the energy saving technology to replace the primary side PDCV with hydraulic turbine, convert the differential pressure into electricity, and utilize electricity as the power of the secondary side pump.

Temperature Control Improvement of Pressure Heating Roller for Flexible Flat Cable Production (Flexible Flat Cable 생산성 향상을 위한 가압용 히팅롤러의 온도제어개선)

  • Kim Jae Hak;Lee Ho Jung;Chun Keyoung Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.155-163
    • /
    • 2005
  • Pressure heating rollers with temperature control were mounted to a flat cable laminating machine (FCLM). Pressure heating rollers should be heated up to the setting temperature $(175^{\circ}C)$ and kept on to producing good quality flexible flat cables (FFC). Existing Pressure heating rollers took more than 70minutes to the setting temperature and did not keep on the setting temperature in production. Temperature controller, electric power controller, material and diameter of rollers and heat capacities were changed to improve the temperature control of the pressure heat rollers for better production of the FFC. Thus, the reaching time to the setting temperature (RT), temperature stability time (TST) and temperature hunting (TH) were measured and compared with the existing pressure rollers case. The RT of A roller was shortened by 50minutes, and B roller was shortened by 15minutes. The TST of A roller was shortened by 13minutes, and B roller was shortened by 15minutes. The THs of both A and B rollers were settled up to ${\pm}5^{\circ}C$. Finally, the productivity of the FCLM and the quality of the FFC were increased.

Quality Characteristics of Cod Stock with Different Extraction Time - Using High Pressure Extraction Time - (추출 시간을 달리하여 제조한 대구 육수의 품질 특성 - 고압 가열 추출 방식으로 -)

  • Kim, Dong-Seok;Lee, Sang-Hwa;Choi, Wu-Kuk;Shin, Kyung-Eun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.2
    • /
    • pp.203-210
    • /
    • 2013
  • In this study, cod bone were used as the main ingredient of a stock that can be eaten with Korean dried noodles. The stock was produced with heating for 30, 40, 50, 60, or 70 minutes using high-pressure extraction methods. Moisture content, chromaticity, pH, sugar content, salinity, mineral contents, quantitative analysis, and overall acceptance were studied to determine the optimal heating time. In our result, S1 the showed highest water contents 98.10%, while S5 showed the lowest moisture content (97.47%). There were no significant difference in pH between samples, while salinity and sugar content increased with increases in heating time. In terms of mineral contents, sodium and potassium showed proportional difference with increases in heating time, however, magnesium, calcium, and iron did not change. The results from a quantitative analysis test showed that transparency, fishy smell, delicate flavor, savory flavor, salt taste, and umami taste became stronger with increases in heating time increase. From the above results, the overall taste of the stock increases with increases in high-pressure heating time. Specifically, S4 high-pressure heating scored the highest on appearance, flavor, taste, after-taste, and overall acceptance. Thus, 60 minutes of high-pressure heating time is most desirable when producing stock with cod bones as a main ingredient.