• 제목/요약/키워드: Heating power

검색결과 1,587건 처리시간 0.022초

개별난방과 지역난방방식의 에너지절감 및 환경개선효과 분석 (Assessment for the effect of heating systems on the energy consumption and environment)

  • 임용훈;김혁주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.466-473
    • /
    • 2007
  • The comparison for the performance of heating systems, district heating and separate heating and power, is carried out in terms of energy consumption and environment on the basis of real operating data. The efficiency of boiler and the heat loss within the housing are assumed with reasonable manner due to the lack of reliable data regarding those quantities. The assessment for the established criteria of previous studies is performed and the new criteria for the analysis is proposed. It is shown that the district heating system is superior to the separate heating and power system from the point of view of reduction of energy use and environment improvement. The sensitivity study for those quantities with uncertainty such as the boiler efficiency and heat loss within the housing is carried out also and the reasons for the analysis results are discussed in detail.

  • PDF

2700kW급 고주파 유도 가열 장치의 시작 (The High-frequency Induction-heating application for 2700kW power)

  • 이영호;김용환;이광수;이현우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.171-174
    • /
    • 1998
  • The development of the high-frequency induction-heating for 2700kW power range intend to make localization at forging and rolling mill part by technical innovation. And, the development makes to increase our's competitive power at technique, quality and cost. This paper describes the heart of high-frequency induction-heating technique, switching technique, a few problem in common using as an unsatisfied technique, load adjustment technique, system control, diagnostic system, and auto-interface etc.

  • PDF

맴브레인 구조를 이용한 미세발열체형 유량센서의 제작과 그 특성 (Fabrication on Microheater Flow Sensors Using Membrane Structure and Its Characteristics)

  • 정귀상;노상수
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.996-1000
    • /
    • 1998
  • This paper describes the characteristics of Pt microheater using aluminum oxide films as medium layer and its application to flow sensors. Pt microheater have heating temperature of $390^{\circ}C$ at heating power of 1.2 W. Output voltages of flow sensors which were fabricated by integrating sensing-part with heating-part increase as gas flow rate and its conductivity increase. At $O_2$ flow rate of 2000 sccm, heating power of 0.8 W, output voltage of flow sensor is 101 mV under bridge-applied voltage of 5 V.

  • PDF

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.

국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구 (Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module)

  • 이채열 ;임종한;이재욱;박상희
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

난방방식별 에너지사용 특성 실증 분석 I: 실증 시스템 구축 (Experimental Investigation for the Characteristics of Energy-Usage of Heating Systems in Apartment Complex Part I: Experiment System Implementation)

  • 임용훈;최규성;김혁주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.480-487
    • /
    • 2007
  • The experimental implementation for different heating systems, district heating and separate heating and power, is discussed in the analysis of the characteristics of energy-usage in apartment complex. Total 20 families are chosen for the experiment, 10 for the district heating and the others for separate heating and power. Among the 10 families, the operating temperature was forced to be controled within certain range of temperatures for 5 ones, and it was left as usual for the other ones. The configuration and general features of each facilities and data acquisition systems are mentioned in brief and the technical specifications for it are also described. The analysis for the experiment results of this investigation is going to be carried out and published in a subsequent paper.

  • PDF

시험선로 결빙방지를 위한 융설시스템에 관한 연구 (A Study on Snow Melting System for the Anti-freezing Testing Road)

  • 한규일;이안호;조동현
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.34-40
    • /
    • 2006
  • The snow melting system by electric heating wires which is adopted in this study is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The system is designed to increase traffic safety and capacity. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, and installation place where the system applies. It is tried to figure out that the appropriate range of required heat capacity and installation depth and intervals for solving snowdrifts and freezing problems with the minimum electric power consumption. The most important factors to design the system are calculation of heating capacity depending on weather condition and depth and interval of the electric heating wires depending on air condition respectively. The study were performed under the range of the air temperatures($-2^{\circ}C,\;-5^{\circ}C,\;-8^{\circ}C$), the intervals of the electric heating wires(70mm, 100mm, 125mm), and the installation depths(50mm, 70mm, 100mm). The ready made commercial program package was used to verify the experimental results.

  • PDF

계통연계 풍력 및 태양광발전시스템 고조파 영향 검토 (Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems)

  • 이상민;정형모;유권종;이강완
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

전력 역변환장치 주요발열부의 열 저감 시스템 변위에 따른 냉각 특성해석 (Analysis of Cooling Characteristics according to Heating Reduction System Displacement of Major Heating Region on Power Inverter)

  • 김민석;김용재
    • 한국전자통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.261-266
    • /
    • 2015
  • 신재생에너지용 발전 시스템은 모듈, 직류 전력을 교류 전력으로 변환시키는 전력 역변환장치, 전력흐름을 제어하고 계통 연계를 담당하는 제어장치로 구성된다. 이러한 시스템은 일사량이 많은 여름철 및 낮 시간에 가장 많은 직류전력을 생산하지만 계통의 연계를 위해 필수적인 전력 역변환장치는 특정 온도 이상으로 상승하면 효율이 급격히 감소하게 된다. 따라서 열전소자를 부착한 열 저감 시스템을 제안하고 가장 발열이 심한 구간을 선정하여 사용개수 및 위치에 따른 온도 특성 해석을 통해 최적 모델을 도출하고자 한다.

Design of power and phase feedback control system for ion cyclotron resonance heating in the Experimental Advanced Superconducting Tokamak

  • L.N. Liu;W.M. Zheng;X.J. Zhang;H. Yang;S. Yuan;Y.Z. Mao;W. Zhang;G.H. Zhu;L. Wang;C.M. Qin;Y.P. Zhao;Y. Cheng;K. Zhang
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.216-221
    • /
    • 2024
  • Ion cyclotron range of frequency (ICRF) heating system is an important auxiliary heating method in the experimental Advanced Superconducting Tokamak (EAST). In EAST, several megawatts of power are transmitted with coaxial transmission lines and coupled to the plasma. For the long pulse and high power operation of the ICRF waves heating system, it is very important to effectively control the power and initial phase of the ICRF signals. In this paper, a power and phase feedback control system is described based on field programmable gate array (FPGA) devices, which can realize complicated algorithms with the advantages of fast running and high reliability. The transmitted power and antenna phase are measured by a power and phase detector and digitized. The power and phase feedback control algorithms is designed to achieve the target power and antenna phase. The power feedback control system was tested on a dummy load and during plasma experiments. Test results confirm that the feedback control system can precisely control ICRF power and antenna phase and is robust during plasma variations.