• 제목/요약/키워드: Heating laser

검색결과 205건 처리시간 0.034초

Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 연구 (A Study on Flow Characteristics of PBK40 for Glass Lens Forming Process Simulation Using a Plate Heating Type)

  • 장성호;윤길상;신광호;이영민;정우철;강정진;정태성;김동식;허영무
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.115-122
    • /
    • 2007
  • Recently, remarkable progress has been made in both technology and production of optical elements including aspheric lens. Especially, requirements for machining glass materials have been increasing in terms of limitation on using environment, flexibility of material selection and surface accuracy. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP process was developed with an eye to mass production of precision optical glass parts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as camera, video camera, aspheric lens for laser pickup, $f-\theta$ lens for laser printer and prism, and me glass parts including diffraction grating and V-grooved base. GMP process consist a succession of heating, forming, and cooling stage. In this study, as a fundamental study to develop molds for GMP used in fabrication of glass lens, we conducted a glass lens forming simulation. In prior to, to determine flow characteristics and coefficient of friction, a compression test and a compression farming simulation for PBK40, which is a material of glass lens, were conducted. Finally, using flow stress functions and coefficient of friction, a glass lens forming simulation was conducted.

박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발 (Development on New Laser Tabbing Process for Modulation of Thin Solar Cell)

  • 노동훈;최철준;조헌영;유재민;김정근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

실리사이드 매개 결정화된 다결정 실리콘 박막의 후속 엑시머 레이저 어닐링 효과에 대한 연구 (Study of Post Excimer Laser Annealing effect on Silicide Mediated Polycrystalline Silicon.)

  • 추병권;박성진;김경호;손용덕;오재환;최종현;장진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.173-176
    • /
    • 2004
  • In this study we investigated post ELA(Excimer Laser Annealing) effect on SMC (Silicide Mediated Crystalization) poly-Si (Polycrystalline Silicon) to improve the characteristics of poly-Si. Combining SMC and XeCl ELA were used to crystallize the a-Si (amorphous Silicon) at various ELA energy density for LTPS (Low Temperature Polycrystalline Silicon). We fabricated the conventional SMC poly-Si with no SPC (Solid Phase Crystallization) phase using UV heating method[1] and irradiated excimer laser on SMC poly-Si, so called SMC-ELA poly-Si. After using post ELA we can get better surface morphology than conventional ELA poly-Si and enhance characteristics of SMC poly-Si. We also observed the threshold energy density regime in SMC-ELA poly-Si like conventional ELA poly-Si.

  • PDF

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법 (Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells)

  • 김성철;윤기찬;경도현;이영석;권태영;정우원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

선택적 에미터 결정질 실리콘 태양전지 제작을 위한 할로겐 램프 장치 개발 (Equipment Manufacturing of Lamp Heating to Fabricate Selective Emitter Silicon Solar Cell)

  • 한규민;최성진;이희덕;송희은
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.102-107
    • /
    • 2012
  • Halogen lamp was applied to fabricate the selective emitter crystalline silicon solar cell. In selective emitter structure, the recombination of minority carriers is reduced with heavily doped emitter under metal grid, consequently improving the conversion efficiency. Laser selective emitter process which is recently used the most generally induces the damage on the silicon surface. However the lamp has enough heat to form heavily doped emitter layer by diffusing phosphorus from PSG without surface damage. In this work, we have studied to find the design and the suitable condition for halogen lamp such as power, time, temperature and figured out the possibility to fabricate the selective emitter silicon solar cell by lamp heating. The sheet resistance with $100{\Omega}/{\Box}$ was lower to $50{\Omega}/{\Box}$ after halogen lamp treatment. Heat transfer to lightly doped emitter region was blocked by using the shadow mask.

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

유연성 전자소자 적용을 위한 BNO박막의 저온화학기상증착 (Low Temperature Chemical Vapor Deposition of BNO Thin Films for Flexible Electronic Device Applications)

  • 전상용;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.42-42
    • /
    • 2007
  • In the future, electronic components will be integrated on flexible polymer substrates and then miniaturized by thin films using suitable thin film technologies. In this article, the concept of a room temperature CVD is demonstrated using $Bi_3NbO_7$ (BNO) films with a cubic fluorite structure and their structural and electrical properties were investigated in films deposited without substrate heating. Effects of substrate temperature on electrical properties of BNO films were also studied. Films deposited without substrate heating (real temperature of $50^{\circ}C$) show partially crystallized BNO single phases with grain size of approximately 6.5 nm. Their dielectric and leakage properties are comparable to those of films deposited by pulsed laser deposition at room temperature. The concept of room temperature CVD will become a new paradigm in the deposition of dielectric thin films for flexible electron device applications.

  • PDF

Joul-heating induced crystallization (JIC) for LTPS TFT-Backplanes

  • 홍원의;노재상
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.244-244
    • /
    • 2010
  • 최근 활발히 연구되고 있는 AMOLED는 평판 디스플레이 분야를 이끌어 갈 차세대 선두 주자로 크게 주목 받고 있다. AMOLED는 전압 구동 방식인 AMLCD와 다르게 전류 구동 방식으로 a-Si TFT 보다 LTPS-TFT 사용이 요구되며, 대면적 기판으로 갈수록 결정립의 균일도가 매우 중요한 인자로 작용한다. 현재 양산이 가능한 AMOLED는 핸드폰이나 15인치 TV정도로 크기가 소형이며 대형 TV나 컴퓨터 모니터 등을 양산하기 위해 많은 방법이 시도되고 있다. 양산체제에서 사용되는 결정화 방법으로는 ELC가 가장 많은 부분을 차지하고 있다. 그러나 레이저를 사용하는 ELC 방법은 대면적으로 갈수록 레이저 빔 자체의 불균일성, shot to shot 불균일성, 레이저빔 중첩의 부정확도 등으로 인한 균일도의 부정확성이 커짐으로 인한 mura 현상이 나타나고 레이저 장비의 사용에 대한 비용 부담을 피할 수 없다. 따라서 non-laser 방식에 결정화 방법이 요구되나 SPC 경우는 상대적으로 고온에서 장시간이 걸리고, MIC 뿐만 아니라 MIC 응용 방법들은 금속 오염에 대한 문제가 발생하고 있는 실정이다. 이러한 문제로 인하여 결정립 크기의 균일도가 우수한 다결정 실리콘 박막을 제조하는 신기술에 대한 필요성이 매우 높은 실정이다. 본 연구에서는 비정질 실리콘 박막 상부 혹은 하부에 도전층을 개재하고, 상기 도전층에 전계를 인가하여 그것의 주울 가열에 의해 발생한 고열로 비정질 실리콘 박막을 급속 고온 고상 결정화하는 방법에 관한 기술인 JIC (Joule-heating Induced Crystallization) 결정화 공정을 개발하였다. 본 공정은 상온에서 수 micro-second 내에 결정화를 수행하는 것이 가능하며 도전층과 실리콘 박막 사이에 barrier층 삽입를 통하여 금속 오염을 막을 수 있으며 공정적인 측면에서도 별도의 chamber가 필요하지 않는 장점을 가지고 있다. 본 논문에서는 JIC 결정화 공정 조건에 따른 결정화 기구 및 JIC poly-Si의 미세구조 및 물리적 특성에 관한 논의가 이루어질 것이다.

  • PDF

Second-order Nonlinear Optical Properties of Amorphous Molecules Based on 5-(4-Diethylamino-benzylidene)-1,3-dimethyl-pyrimidine-2,4,6-trione

  • Lee, Seung-Mook;Rhee, Bum-Ku;Lee, Sang-Ho;Lee, Chul-Joo;Park, Ki-Hong
    • Journal of Photoscience
    • /
    • 제10권2호
    • /
    • pp.203-208
    • /
    • 2003
  • Two coupled molecules were successfully synthesized by condensation of amine-donor-substituted barbituric acid derivativies as nonlinear optical chromophores. A flexible spacer of the alkyl chain with different lengths of carbon chains (5 and 6 carbons) was introduced between two chromophores, which prevented crystallization and aggregation of molecules. Two coupled molecules (B-Cn-B, n=5, 6) had glass-transition temperatures on a second heating around 81 and 76$^{\circ}C$ without melting points, respectively. To explore the linear optical properties, thin-films were prepared and examined by a photometry method using Nd:YVO$_4$ CW laser. Also, microscopic and macroscopic nonlinear optical properties were measured by Hyper-Rayleigh Scattering (HRS) and the Maker Fringes method using Nd:YAG ps pulse laser, respectively. In spite of the moderate hyperpolarizabilities of coupled molecules, the second order NLO coefficient (d$\_$33/) was larger than the conventional Disperse Red 1 doped PMMA polymeric system.

  • PDF