• Title/Summary/Keyword: Heating film

Search Result 507, Processing Time 0.028 seconds

Low Temperature Growth of High-Quality Carbon Nanotubes by Local Surface Joule Heating without Heating Damage to Substrate

  • Heo, Sung-Taek;Lee, Dong-Gu
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.230-233
    • /
    • 2009
  • In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around $1200^{\circ}C$ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at $300^{\circ}C$ by applying 125 V for joule heating as same as carbon nanotubes grown at $900^{\circ}C$.

Effect of Outdoor Temperature on the Refrigerant Behavior in the Compressor of a Heat Pump Operating at Heating Mode (열펌프의 난방운전시 외기온이 압측기의 냉매거동에 미치는 영향)

  • 이재효;김병균;이건우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.452-458
    • /
    • 2004
  • The major cause of compressor failure is the decrease of oil viscosity due to floodback. In most previous researches on the compressor reliability, the relationship between oil circulation rate and performance or oil viscosity has been studied. Another research topic is flow visualization by using a sight glass on the bottom of a compressor sump area and accumulator. Both oil film thickness and oil level through the sight glass should be assessed for compressor reliability if the oil content of the mixture is small and low viscosity raise poor lubrication of pump bearing. In this study, the compressor reliability was assessed by measuring the viscosity of the mixture and calculating oil film thickness. The analysis of the relationship between bottom shell super heat and oil film thickness at heating operation was peformed. It is concluded that bottom shell superheat does not perfectly stand for the mixture's behavior for a low ambient heating operation and oil film thickness can give more detailed and direct criteria for compressor reliability.

Effects of Processing Conditions on Thickness Distribution for a Laminated Film during Vacuum-Assisted Thermoforming (열진공성형 공형조건이 적층필름의 두께분포에 미치는 영향)

  • Yoo, Y.G.;Lee, H.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.250-256
    • /
    • 2011
  • Vacuum-assisted thermoforming is one of the critical steps for the successful application of film insert molding(FIM) to parts of complex shapes. If the thickness distribution of the formed film is non-uniform, cracking, deformation, warping, and wrinkling can easily occur at the injection molding stage. In this study, the effects of processing parameters, which include the film heating time, plug depth, plug speed and vacuum delay time, on film thickness distribution were investigated. It was found that the film thickness at the part sidewall decreases with increasing the film heating time and plug depth, but the thickness at the bottom was found to exhibit the opposite behavior. The film thickness of the sidewall was observed to increase at higher plug speed and vacuum delay time of 0 ~ 0.3sec.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.594-597
    • /
    • 2009
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There also over-heating on the front surface of pylon without film cooling. The coolant injected parallel to the front surface of the pylon protect the pylon from over-heating.

  • PDF

Low-resistance Transparent Plane Heating System using CVD Graphene (CVD 그래핀을 이용한 저저항 투명면상발열 시스템)

  • Yoo, Byongwook;Han, Sangsoo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 2019
  • To prevent the low heating effect of heating system caused by the high sheet resistance of CVD graphene, multi-layered graphene was laminated to implement a Transparent plane heating system with good optical properties of low-resistance. Low-resistance plane heating system implemented by $300{\times}400{\times}5mm$ heating plane laminated multi-layered CVD graphene film and PWM control system to drive efficient power. A plane resistance value of $85.5{\Omega}/sq$ was measured on average for 4-layer CVD graphene film used as a heating plane. Thus, the transfer by thermal film as the method of implementing low-resistance CVD graphene is reasonable. The experimental results of heat test show that an average heat-rise rate in low-resistance, transperent plane heating system using CVD graphene is $10^{\circ}C/min$ and has an optical transmittance rate of 86.44%. Therefore, the proposed heating system is applicable to large window glass and vehicle heating window-shild-glass.

Ion Beam Assisted Crystallization Behavior of Sol-Gel Derived $PbTiO_3$ Thin Films

  • Oh, Young-Jei;Oh, Tae-Sung;Jung, Hyung-Jin
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.48-53
    • /
    • 1996
  • Ion beam assisted crystallization behavior of sol-gel derived $PbTiO_3$ thin films, deposited on bare silicon(100) substrates by spin-casting method, has been investigated. Ar ion bombardment was directly conducted on the spincoated film surface with or without heating the film from room temperature to $300^{\circ}C$. Ion dose was changed from $5{\times}10^{15}$ to $7.5{\times}10^{16}$ $Ar^-/cm^2$. Formation of (110) oriented perovskite phase was obseerved with ion dose above $5{\times}10^{16}\; Ar^+/cm^2$. Crystallization of $PbTiO_3$ thin film could be enhanced with increasing the Air ion dose, or heating the substrate during ion bombardment. Crystallization of the $PbTiO_3$ films by ion bombardment was related to the local heating effect during ion bombardment.

  • PDF

Fabrication of Pt Thin-film Type Microheater for Thermal Microsensors and Its Characteristics (열형 마이크로센서용 백금박막형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.509-513
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it deposited by reactive sputtering and rf magnetron sputtering respectively were analyzed with annealing temperature and time by four point probe SEM and XRD. Under annealing conditions of 100$0^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin-film and the sheet resistivity and the resistivity of Pt thin-film deposited on it were 0.1288 Ω/ and 12.88 $\mu$$\Omega$.cm respectively. We made Pt resistance pattern on SiO$_2$/Si substrate by life-off method and fabricated Pt thin-film type microheater for thermal microsensors by Pt-wire Pt-paste and SOG(spin-on-glass). In the temperature range of 25~40$0^{\circ}C$ we estimated TCR(temperature coefficient of resistance) and resistance ratio of thin-film type Pt-RTD(resistance thermometer device). We obtained TCR value of 3927 ppm/$^{\circ}C$ close to the bulk Pt value. Resistance values were varied linearly within the range of the measurement temperature. The thermal characteristics of fabricated thin-films type Pt micorheater were analyzed with Pt-RTD integrated on the same substrate. The heating temperature of Pt microheater could be up to 40$0^{\circ}C$ with 1.5 watts of the heating power.

  • PDF

Comparison on the Economical Efficiency of the Multiple Glazed Windows According to Life Cycle Costing of an Officetel Model Building (오피스텔 모델건물의 생애주기비용 분석에 의한 다층유리창 경제성 비교)

  • Jung Gun-Joo
    • Journal of the Korean housing association
    • /
    • v.17 no.4
    • /
    • pp.101-109
    • /
    • 2006
  • The purpose of this study was to suggest ways on reducing the cooling and heating energy cost of the officetel building with the multiple glazing windows according to Life Cycle Costing. This study consisted of an hour-by hour energy simulation program and further data from the EnergyPlus V1-2-2 to the four pane type windows that were applied with 2 low-e polyester film and krypton gas to the officetel model building. It was determined that the four panes type windows that had 2 low-e polyester film and krypton gas applied to, them showed a cooling and heating cost reduction over traditional double glazed windows that were filled with air. According to this study, as well as the information from chart 4.5 and the LCC it was determined that the present value of the four panes of windows that had 2 low-e polyester film and krypton gas applied to them showed. a 11.4% reduction in heating and cooling in comparison to the traditional double glazed windows that were filled with air.

A study on the fabrication of heatable glass using conductive metal thin film on Low-e glass (로이유리의 전도성 금속박막을 이용한 발열유리 제작에 관한 연구)

  • Oh, Chaegon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper proposes a method for fabricating heatable glass using the conduction characteristics of metal thin films deposited on the surface of Low-e(Low emissivity) glass. The heating value of Low-e glass depends on the Joule heat caused by Low-e glass sheet resistance. Hence, its prediction and design are possible by measuring the sheet resistance of the material. In this study, silver electrodes were placed at 50 mm intervals on a soft Low-e glass sample with a low emissivity layer of 11 nm. This study measured the sheet resistance using a 4-point probe, predicted the power consumption and heating value of the Low-e glass, and confirmed the heating performance through fabrication and experience. There are two conventional methods for manufacturing heatable glass. One is a method of inserting nichrome heating wire into normal glass, and the other is a method of depositing a conductive transparent thin film on normal glass. The method of inserting nichrome heating wire is excellent in terms of the heating performance, but it damages the transparency of the glass. The method for depositing a conductive transparent thin film is good in terms of transparency, but its practicality is low because of its complicated process. This paper proposes a method for manufacturing heatable glass with the desired heating performance using Low-e glass, which is used mainly to improve the insulation performance of a building. That is by emitting a laser beam to the conductive metal film coated on the entire surface of the Low-e glass. The proposed method is superior in terms of transparency to the conventional method of inserting nichrome heating wire, and the manufacturing process is simpler than the method of depositing a conductive transparent thin film. In addition, the heat characteristics were compared according to the patterning of the surface thin film of the Low-e glass by an emitting laser and the laser output conditions suitable for Low-e glass.