• 제목/요약/키워드: Heating experiment

검색결과 868건 처리시간 0.029초

학교급식소의 HACCP 시스템 적합성 검증 -가열조리 및 가열조리 후처리 공정의 미생물적 품질평가를 중심으로- (Verification of the HACCP System in School Foodservice Operations - Focus on the Microbiological Quality of Foods in Heating Process and After-Heating Process -)

  • 전인경;이연경
    • Journal of Nutrition and Health
    • /
    • 제36권10호
    • /
    • pp.1071-1082
    • /
    • 2003
  • The objective of this study was to evaluate and improve the microbiological quality of HACCP application in school foodservice operations. The microbiological quality of foods and utensils were evaluated two times at each critical control point (CCP) with 3M petrifilm in five Daegu elementary schools. Two processes were evaluated: Heating process and after-heating process. The CCPs of the heating process were receiving, cooking and serving temperatures. The CCPs of the after-heating process were personal hygiene, cross contamination avoidance and serving temperature. After the first experiment, 31 employees of five schools were classroom educated, trained on-site, and pre- and post-tested on HACCP-based sanitation with the goal of improving the microbiological quality of the foodservice. Scores representing knowledge of holding, thawing, washing, food temperature, sanitizing and food-borne illness increased after education. In the heating process, internal food temperatures in the first and second experiments were higher than 74$^{\circ}C$, the holding temperature in the first experiment was less than 6$0^{\circ}C$. In the second experiment, the serving temperature improved to a satisfactory level. The microbiological quality in the second experiment improved by decreasing the time from cooking to serving. In the after-heating process, the ingredients were boiled before being cut in the first experiment. In the second experiment, ingredients were cut before being boiled, improving microbiological quality. Also in the second experiment, cooking just before serving food improved its microbiological quality through time-temperature control. These results strongly suggest it is essential to measure microbiological quality regularly and to educate employees on HACCP continuously, especially time-temperature control and cross contamination avoidance in order to improve foodservice quality.

중학교 과학 교과서 분별 증류 실험의 비교 분석 및 개선 (A Comparative Analysis and Improvement of the Fractional Distillation Experiments in the Middle School Science Textbooks)

  • 류오현;최문영;송주현;권정근;백성혜;박국태
    • 대한화학회지
    • /
    • 제45권5호
    • /
    • pp.481-490
    • /
    • 2001
  • 이 연구의 목적은 제 6차 교육과정에 의한 중학교 1학년 과학 교과서 분별 증류 실험의 문제점을 파악하고, 중학생들이 분별 증류 실험을 능률적으로 수행할 수 있는 실험 방법을 제시하고자 하는 것이다. 이를 위한 첫 번째 단계로서 현재 사용되고 있는 8종의 과학 교과서를 분별 증류 실험 장치와 액체 혼합물의 종류에 따라 6가지로 분류하였다. 두 번째 단계로서 액체 혼합물을 가열 방법에 따라 직접 가열과 물 중탕 가열로 나누어 교과서 실험과정에 따라 같은 실험을 세 번 실시하였다. 세 번재 단계로서 실험 결과의 문제점을 해결하기 위한 대안 실험을 실시하였다. 대안 실험에서는 알코올 램프로 직접가열 하는 방법과 기름 중탕으로 가열하는 방법, 그리고 가열 맨틀을 사용하여 가열하는 방법을 사용하였다. 연구결과, 가지달린 둥근 플라스크를 직접 가열하는 실험 결과가 가지 달린 시험관을 물 중탕으로 가열하는 실험 결과보다 이론적인 결과에 근접하였다. 그리고 가지 달린 둥근 플라스크를 직접 가열하는 실험에서 플라스크 윗 부분을 보온해 주는 실험이 보온하지 않은 실험보다 실험 결과가 더 나았다. 대안 실험에서는 액체 혼합물의 증류 온도 증가를 보면서 가열 맨틀의 가열 온도를 올려 준 실험의 결과가 이론적인 결과에 가장 가까웠다. 이러한 연구 결과로부터 가지 달린 시험관을 물 중탕으로 가열하는 분별 증류 실험장치는 탐구실험 수업에 부적절한 것이므로 개선이 요구되며, 중학교 과학실 여건을 고려할 때, 액체 혼합물의 증류 온도 증가를 보면서 가열 맨틀의 가열 온도를 변화시키는 분별 증류 실험이 가장 능률적인 방법임을 알 수 있었다.

  • PDF

시판 발열의복의 발열성능 평가 (Evaluation for the Heating Performance of the Heated Clothing on Market)

  • 이현영;정연희
    • 한국의류산업학회지
    • /
    • 제12권6호
    • /
    • pp.843-850
    • /
    • 2010
  • To evaluate the heating performance of commercial heated vests, we investigated the thermal images and the temperature between body and vest for three heated vests. We captured infrared thermography by FT-IR Spectrometer to analyzed the heating temperature of the heating elements taken from the vests, and the maximum heating temperature of the vests was compared with thermal image in the room temperature($18^{\circ}C$). In outdoor experiment($-4.7^{\circ}C$), we measured the inner temperature as well as the thermal image of heated vests. Four healthy men participated in this experiment, and the ANOVA and Duncan test was performed for statistical analysis. As the results, the heating temperature range of the heated vests used in this experiment was $32{\sim}42^{\circ}C$, much lower than the displayed temperature range in their specifications, so the exact specification for heating performance of heated clothing was required. In comparisons of the heating performance among the heated vests, we found out that the insulation of clothing is very important to design the heated clothing, because the inner temperature of the vest had good insulation by itself was higher than that of the vest shown higher temperature over $7^{\circ}$ than another vests at the heating temperature.

조조가온기간이 시설재배 오이의 생육과 수량 및 난방부하에 미치는 영향 (Effect of Additional Early-Morning Heating Periods on the Growth and Yield of Cucumber and Heating Load)

  • 권준국;강남준;이재한;강경희;최영하
    • 생물환경조절학회지
    • /
    • 제13권4호
    • /
    • pp.245-250
    • /
    • 2004
  • 본 연구는 조조가온기간이 시설오이의 생육과 수량 및 난방부하에 미치는 영향을 구명하고자, 일출전에 난방온도를 올려서 $12^{\circ}C$에서 $16^{\circ}C$로 올려서 가온하는 기간을 2시간, 1시간 및 0시간을 비교하였다. 보온커텐을 열기 직전$(08:50\~09:00)$의 엽온은 조조가온을 하지 않는 것에 비해 1시간 가온이 $3.3^{\circ}C$, 2시간 가온이 $4.1^{\circ}C$각각 높았다. 오이 잎의 광합성, 기공전도도 및 증산량은 2시간 조조가온이 가장 좋았으나 1시간 가온과의 차이가 근소하였고 조조가온을 하지 않은 것은 현저히 감소하였다. 오이 잎의 무기성분함량은 유의적 차이는 없었으나 2시간, 1시간, 0시간 순으로 높은 경향이었다. 정식 이후의 초기생육은 1시간과 2시간 가온이 비슷하게 빨랐으나 조조가온을 하지 않는 것은 현저히 저조하였다. 과실 수량은 조조가온을 하지 않는 것에 비해 1시간 가온이 $11\%$, 2시간 가온이 $15\%$ 각각 증가되었다. 연료소모량은 조조가온하지 않는 것에 비해 1시간 가온이 $12\%$, 2시간 가온이 $22\%$ 각각 많았다. 생산물의 증수량과 연료소모량을 감안할 때 조조 가온하지 않는 것에 비해 가온한 것이 경영상 유리하였다.

난방방식별 에너지사용 특성 실증 분석 I: 실증 시스템 구축 (Experimental Investigation for the Characteristics of Energy-Usage of Heating Systems in Apartment Complex Part I: Experiment System Implementation)

  • 임용훈;최규성;김혁주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.480-487
    • /
    • 2007
  • The experimental implementation for different heating systems, district heating and separate heating and power, is discussed in the analysis of the characteristics of energy-usage in apartment complex. Total 20 families are chosen for the experiment, 10 for the district heating and the others for separate heating and power. Among the 10 families, the operating temperature was forced to be controled within certain range of temperatures for 5 ones, and it was left as usual for the other ones. The configuration and general features of each facilities and data acquisition systems are mentioned in brief and the technical specifications for it are also described. The analysis for the experiment results of this investigation is going to be carried out and published in a subsequent paper.

  • PDF

복사난방패널 방열량실험의 제어오차요인 분석 (Analysis of Control Error Factors of a Thermal Output Experiment for Radiant Heating Panels)

  • 신대욱
    • 토지주택연구
    • /
    • 제9권4호
    • /
    • pp.33-42
    • /
    • 2018
  • As a radiant heating panel gets more popularity, the need to study on evaluation method of thermal output of the panel also becomes increasing. Generally, the chamber using method is applied to evaluate the thermal output through an experiment. However, the chamber using method cannot be used due to the limitations on space and cost. EN1264 addresses the test equipment to evaluate the thermal output by using simpler experimental setup, and introduces application method in detail. However, there is not enough description of control methods to meet the experiment condition, and it is difficult to meet this when practical experiment. Therefore, this paper analysed the control error factors of when the thermal output experiment is performed. When EN1264 method is applied to evaluate the thermal output of the radiant floor heating panel, the error factor which is caused by the characteristic of test equipment cannot be removed by the control methods of chamber using method. In addition, the error factor can be occurred at the element which is located out of the control system. These possible error factors are defined as the characteristic error factors.

전기장판의 화재위험성 실험연구 (An Experimental Study on the Fire Hazard of Electric Heating Pad)

  • 이복영;박찬호;박상태;홍성호;유현종
    • 한국화재소방학회논문지
    • /
    • 제20권3호
    • /
    • pp.113-117
    • /
    • 2006
  • 본 연구는 가정용 전열제품인 전기장판에 대한 화재실험과 난연성실험을 통하여 화재위험성을 분석하였다. 화재실험은 정상조건에서 정격전압을 인가하는 경우와 온도조절기 고장시 정격전압이 인가되는 경우를 모델링하였다. 난연성실험은 UL 94의 수직 연소시험방법을 이용하여 전기장판의 난연성능을 평가하였다. 실험에 사용된 전기장판의 종류는 전기매트, 전기요, 비닐장판이다. 실험결과 온도조절기가 고장난 상태에서 정격전압이 인가되는 경우 화재위험성이 높은 것으로 나타났으며 전기장판의 재질은 난연성이 없는 것으로 나타났다.

시험공간에 대한 난방부하 실증실험 및 계산 (Verification Experiment and Calculation of Heating Load for a Test Space)

  • 현석균;홍희기;유호선
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.153-160
    • /
    • 2002
  • As a way to assess the reliability of programs for building energy analysis, verification experiment and calculation of heating load are simultaneously conducted for a well-defined test space. Experimental conditions are carefully set to minimize uncertainties associated with radiation heating, air change, infiltration, and room-to-room interaction. Dyna- mic load calculations using TRNSYS, which are performed for two different computation domains, rely on the energy rate control that represents inherent load characteristics of a space. The predicted instantaneous heating load favorably simulates the overall behavior the measured one, though the latter fluctuates much more rapidly than the former Comparison of the accumulative load between the experiment and calculations shows a close agreement within an engineering tolerance, regardless of the computation model. It is deduced from such findings that the present experimental results along with weather information can serve as a set of reference data for validating load calculation softwares from the users'standpoint. In order to enhance the completeness of this work, a complementary study on the cooling load for the same test space is highly recommended.

투과전자현미경 내 직접 가열 실험에서의 실험적 문제들 (Practical Issues on In Situ Heating Experiments in Transmission Electron Microscope)

  • 김영민;김진규;김양수;오상호;김윤중
    • Applied Microscopy
    • /
    • 제38권4호
    • /
    • pp.383-386
    • /
    • 2008
  • In performing in situ heating transmission electron microscopy (TEM) for materials characterizations, arising concerns such as specimen drifts and unintentional Cu contamination are discussed. In particular, we analysed the thermal and mechanical characteristics of in situ heating holders to estimate thermal drift phenomena. From the experimental results, we suggest an empirical model to describe the thermal drift behavior so that we can design an effective plan for in situ heating experiment. Practical approaches to minimize several hindrances arisen from the experiment are proposed. We believe that our experimental recommendations will be useful for a microscopist fascinated with the powerful potential of in situ heating TEM.

플라스틱 온실의 기간난방부하 산정 방법 개발 (Development of a Method to Estimate the Seasonal Heating Load for Plastic Greenhouses)

  • 남상운;신현호
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.37-42
    • /
    • 2015
  • In order to provide fundamental data for the creation of environmental design criteria for horticultural facilities, we developed a method to easily calculate the seasonal heating load applying heating degree-hour while taking into account heating load reductions due to solar radiation in the daytime, and reviewed through greenhouse heating experiments. Heating experiments and measuring meteorological environments were carried out in three greenhouses located at Buyeo, Cheonan, and Buan, and we derived reduction factors of seasonal heating load according to hours of sunshine. Daily mean hours of sunshine during the experiment period in each of the greenhouse was 4.0 to 8.3 hours, and the reduction factor of seasonal heating load was 0.64 to 0.85, has been shown to decrease linearly with the increase in hours of sunshine. A method to estimate the seasonal heating load for greenhouses was developed using the reduction factor of seasonal heating load derived from the greenhouse heating experiment, including the adjustment factor of seasonal heating load according to hours of sunshine. The developed method was validated through heating experiments in a greenhouse located at Cheonan. Greenhouse seasonal heating loads calculated by the method developed in this study were analyzed to show the estimate error of 1.2 to 5.0%. It showed that the accuracy increased 2.3 times more than when using the heating load reduction factor of 0.75 applied uniformly in previous studies. Thus, the calculation method of seasonal heating load for greenhouses considering hours of sunshine developed in this study could be utilized for energy estimation, management planning, and economic evaluation in greenhouse design.