• Title/Summary/Keyword: Heating and Cooling Energy Demand

Search Result 87, Processing Time 0.021 seconds

Prediction of Heating and Cooling Energy Consumption in Residential Sector Considering Climate Change and Socio-Economic (기후변화와 사회·경제적 요소를 고려한 가정 부문 냉난방 에너지 사용량 변화 예측)

  • Lee, Mi-Jin;Lee, Dong-Kun;Park, Chan;Park, Jin-Han;Jung, Tae-Yong;Kim, Sang-Kyun;Hong, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.487-498
    • /
    • 2015
  • The energy problem has occurred because of the effects of rising temperature and growing population and GDP. Prediction for the energy demand is required to respond these problems. Therefore, this study will predict heating and cooling energy consumption in residential sector to be helpful in energy demand management, particularly heating and cooling energy demand management. The AIM/end-use model was used to estimate energy consumption, and service demand was needed in the AIM/end-use model. Service demand was estimated on the basis of formula, and energy consumption was estimated using the AIM/end-use model. As a result, heating and cooling service demand tended to increase in 2050. But in energy consumption, heating decreased and cooling increased.

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.

The Demand Expectation of Heating & Cooling Energy in Buildings According to Climate Warming (기후 온난화의 영향에 의한 건물의 냉.난방에너지 수요량 예측)

  • Kim, Ji-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.119-125
    • /
    • 2006
  • The impacts of climate changes on building energy demand were investigated by means of the degree-days method. Future trends for the 21st century was assessed based on climate change scenarios with 7 global climate models(GCMs). We constructed hourly weather data from monthly temperatures by Trnsys 16. A procedure to estimate heating degree-days (HDD) and cooling degree-days (CDD) from monthly temperature data was developed and applied to three scenarios for Inchon. In the period 1995-2080, HDD would fall by up to 70%. A significant increase in cooling energy demand was found to occur between 1995-2004(70% based on CDD). During 1995-2080, CDD would Increase by up to 120%. Our analysis shows widely varying shifts in future energy demand depending on season. Heating costs in winter will significantly decrease whereas more expensive electrical cooling energy will be needed.

Prediction on Variation of Building Heating and Cooling Energy Demand According to the Climate Change Impacts in Korea (우리나라의 기후 변화 영향에 의한 건물 냉난방에너지 수요량 변화의 예측)

  • Kim, Ji-Hye;Kim, Eui-Jong;Seo, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.789-794
    • /
    • 2006
  • The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for Inchon. Future trends for the 21 st century was assessed based oil climate change scenarios with 7 global climate models(GCMs), We constructed hourly weather data from monthly temperatures and total incident solar radiation ($W/m^2$) and then simulated heating and cooling load by Trnsys 16 for Inchon. For 2004-2080, the selected scenarios made by IPCC foresaw a $3.7-5.8^{\circ}C$rise in mean annual air temperature. In 2004-2080, the annual cooling load for a apartment with internal heat gains increased by 75-165% while the heating load fell by 52-71%. Our analysis showed widely varying shifts in future energy demand depending on the season. Heating costs will significantly decrease whereas more expensive electrical energy will be needed of air conditioning during the summer.

  • PDF

A Study on Analysis for Energy Demand of the Heating, Cooling and Lighting in Office Building with Transparent Thin-film a-Si BIPV Window (투광형 박막 BIPV 창호 적용에 따른 냉난방 및 조명 부하 저감에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Park, Jang-Woo;Kim, Bit-Na
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2013
  • The purpose of this study was to analyze the annual energy demand including heating, cooling and lighting according to kind of windows with transparent thin-film a-Si Building Integrated Photovoltaic(a-Si BIPV) for office building. The analysis results of the annual energy demand indicated that the a-si BIPV window was reduced by 8.4% than the clear gazing window. The base model A was combinate with a-Si BIPV window area of 67% and clear window area of 33% among the total exterior area. The model B is to be applied with low-e clear glass instead of clear glass of the base model A. The model B was reduced to annual energy demand of 1% more than the model A. Therefore, By using a-si BIPV solar module, the cooling energy demand can be reduced by 53%(3.4MWh) and the heating energy demand can be increase by 58%(2.4MWh) than clear glazing window in office building. Also, Model C applied to the high efficient lighting device to the model B was reduced to annual energy demand of 14.4% more than the Model D applied to the high efficient lighting device to the model A. The Model E applied with daylight dimming control system to the Model C was reduced to annual energy demand of 5.9% more than Model C.

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

Development of Energy Demand Models for Hospitals (병원 건물의 에너지 부하모델 개발)

  • Park, Hwa-Choon;Chung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.636-642
    • /
    • 2009
  • Energy consumption data are surveyed and measured to develop energy demand models for hospital buildings as part of a complete package. Daily consumption profiles for electricity, heating, cooling and hot water are surveyed for 14 carefully chosen hospitals to establish energy demand patterns for a time span of a year. Then the hourly demand patterns of the 4 loads are field-measured for different seasons and statistically analyzed to provide higher resolution models. Used in conjunction with energy demand models for other types of buildings, the high resolution of 8760 hour energy demand models for a hospital for a typical year will serve as building blocks for the comprehensive model that allows the estimation of the combined loads for arbitrary mixtures of buildings.

Comparison of Energy Demand Characteristics for Hotel, Hospital, and Office Buildings in Korea (호텔, 병원, 업무용 건물의 에너지 부하 특성 비교)

  • Park, Hwa-Choon;Chung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.553-558
    • /
    • 2009
  • Energy demand characteristics of hotel, hospital, and office building are compared to provide guidelines for combining building in community energy system design. The annual, monthly, and daily energy demand patterns for electricity, heating, hot water and cooling are qualitatively compared and important features are delineated based on the energy demand models. Key statistical values such as the mean, the maximum are also provided. Important features of the hourly demand patterns are summarized for weekdays and weekends. Substantial variations in both magnitudes and patterns are observed among the 3 building types and smart grouping or combination of building type and size is essential for a successive energy supply.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.